$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

보통 포틀랜드 시멘트 물성에 미치는 시멘트 입도의 영향

Effect of Cement Particle Size on Properties of Ordinary Portland Cement

Abstract

This study examined the effects of particle size on characteristics of cement by controlling the particle size of commercial cement. Through a size adjustment, the cement has increasing more of particles that are less than $10{\mu}m$ in size so the initial reaction time has been shortened as a result of improvement in the early hydration reaction. Additionally, it showed a great characteristics of strength from the early age and the initial hydration heat has been increased as well. In the upper and middle parts cements, the initial hydration reaction rate contribution is high with the $10{\mu}m$ compared to original cement. So the initial hydration reaction rate is improved and as a result, it also showed relatively high hydration heat as well. Additionally, adiabatic temperature also showed an increase rate in the results.

참고문헌 (13)

  1. S. Nagataki, "Mineral Admixtures in Concrete : State of The art and Trends," ACI SP-144, 473-74 (1994). 
  2. W. Dehuai and C. Zhaoyuan, "On Predicting Compressive Strengths of Mortars with Ternary Blends of Cement, Ggbfs and Fly Ash," Cem. Concr. Res., 27 487-93 (1997). 
  3. H. Binici, I. H. Cagatay, T. Shah, and S. Kapur, "Mineralogy of Plain Portland and Blended Cement Pastes," Cem. Concr. Res., 43 1318-25 (2008). 
  4. W.A. Gutteridge and J.A. Dalziel, "Filler Cement: The Effect of the Secondary Component on the Hydration of Portland Cement: Part 2. Fine Hydraulic Binders," Cem. Concr. Res., 20 853-61 (1990). 
  5. W. Dehuai and C. Zhaoyuan, "On Predicting Compressive Strengths of Mortars with Ternary Blends of Cement, GGBFS and Fly Ash," Cem. Concr. Res., 27 487-93 (1997). 
  6. D. P. Bentz, E. J. Garboczi, C. J. Heacker, and Ole M. Jensen, "Effect of Cement Particle Size Distribution on Performance Properties of Portland Cement-based Materials," Cem. Concr. Res., 29 1663-71 (1999). 
  7. A. Nonat, "Interactions Between Chemical Evolution (Hydration) and Physical Evolution (Setting) in the Case of Tricalcium Silicate," Mater. Structure, 27 187-95 (1994). 
  8. Y. Akkaya, T. Voigt, K.V. Subramaniam, and S.P. Shah, "Nondestructive Measurement of Concrete Strength Gain by an Ultrasonic Wave Reflection Method," Mater. Structure, 36 507-14 (2003). 
  9. A. Princigallo, P. Lura, K. van Breugel, and G. Levita, "Early Development of Properties in A Cement Paste: A Numerical and Experimental Study," Cem. Concr. Res., 33 1013-20 (2003). 
  10. A. Bezjak, "An Extension of the Dispersion Model for the Hydration of Portland Cement," Cem. Concr. Res., 16 260-64 (1986). 
  11. J.H. Yun, "Portland Cement Paste and Concrete", pp. 215-34, Sea Jin Publishing CO., Seoul, 1990. 
  12. X. Feng, E.J. Garboczi, D.P. Bentz, P.E. Stutzman, and T.O. Mason, "Estimation of the Degree of Hydration of Blended Cement Pastes by a Scanning Electron Microscope Pointcounting Procedure," Cem. Concr. Res., 34 1787-93 (2004). 
  13. G. Frigione and S. Marra, "Relationship between Particle Size Distribution and Compressive Strength in Portland Cement," Cem. Concr. Res., 6 113-27 (1976). 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일