$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

참고문헌 (32)

  1. Attard, M.M. (1986), "Nonlinear theory of non-uniform torsion of thin-walled open beams", Thin Wall. Struct., 4, 101-134. 
  2. Barsoum, R.S. and Gallagher, R.H. (1970), "Finite element analysis of torsional and torsional-flexural stability problems", Int. J. Numer. Meth. Eng., 2, 335-352. 
  3. Bazant, Z.P. and Cedolin, L. (1991), Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, Oxford University Press. 
  4. Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 247-268. 
  5. Cowper, G.R. (1966), "The shear coefficient in timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. 
  6. Euler, L. (1759), Sur la force des colonnes, Memoires Academic Royale des Sciences et Belle Lettres. 
  7. Gadalla, M.A. and Abdalla, J.A. (2006), "Modeling and prediction of buckling behavior of compression members with variability in material and/or section properties", Struct. Eng. Mech., 22(5), 631-645. 
  8. Hutchinson, J.R. (2001), "Shear coefficients for timoshenko beam theory", J. Appl. Mech., 68, 87-92. 
  9. Ioannidis, G.I. and Kounadis, A.N. (1999), "Flexural-torsional postbuckling analysis of centrally compressed bars with open thin-walled cross-section", Eng. Struct., 21, 55-61. 
  10. Katsikadelis, J.T. (2002), "The analog equation method, a boundary-only integral equation method for nonlinear static and dynamic problems in general bodies", Theor. Appl. Mech., 27, 13-38. 
  11. Knothe, K. and Wessels, H. (1992), Finite Elemente, Springer Verlag, 2. Auflage, Berlin-New York. 
  12. Kounadis, A.N. (1998), "Postbuckling analysis of bars with thin-walled cross sections under simultaneous bending and torsion due to central thrust", J. Construct. Steel Res., 45, 17-37. 
  13. Li, Q.S. (2003), "Effect of shear deformation on the critical buckling of multi-step bars", Struct. Eng. Mech., 15(1), 71-81. 
  14. Mohri, F., Azrar, L. and Potier-Ferry, M. (2001), "Flexural-torsional post-buckling analysis of thin-walled elements with open sections", Thin Wall.Struct., 39, 907-938. 
  15. MSC/NASTRAN for Windows (1999), Finite Element Modeling and Postprocessing System, Help System Index,Version 4.0, USA. 
  16. Rajasekaran, S. (2008), "Buckling of fully embedded non-prismatic columns using ifferential quadrature and differential transformation methods", Struct. Eng. Mech., 28(2), 221-238. 
  17. Sapountzakis, E.J. and Katsikadelis, J.T. (2000), "Elastic deformation of ribbed plate systems under static, transverse and inplane loading", Comput. Struct., 74, 571-581. 
  18. Sapountzakis, E.J. and Mokos, V.G. (2001), "Nonuniform torsion of composite bars by boundary element method", J. Eng. Mech-ASCE, 127(9), 945-953. 
  19. Sapountzakis, E.J. and Mokos, V.G. (2003), "Warping shear stresses in nonuniform torsion by BEM", Comput. Mech., 30, 131-142. 
  20. Sapountzakis, E.J. and Mokos, V.G. (2004), "Nonuniform torsion of bars of variable cross section", Comput. Struct., 82, 703-715. 
  21. Sapountzakis, E.J. and Mokos, V.G. (2005), "A BEM solution to transverse shear loading of beams", Computat. Mech., 36, 384-397. 
  22. Schramm, U., Kitis, L., Kang, W. and Pilkey, W.D. (1994), "On the shear deformation coefficient in beam theory", Finite Elem. Anal. Des., 16, 141-162. 
  23. Schramm, U., Rubenchik, V. and Pilkey, W.D. (1997), "Beam stiffness matrix based on the elasticity equations", Int. J. Numer. Meth. Eng., 40, 211-232. 
  24. Simitses, G.J. and Hodges, D.H. (2006), Fundamentals of Structural Stability, Elsevier, Boston. 
  25. Stephen, N.G. (1980), "Timoshenko's shear coefficient from a beam subjected to gravity loading", J. Appl. Mech., 47, 121-127. 
  26. Szymczak, C. (1980), "Buckling and initial post-buckling behavior of thin-walled I columns", Comput. Struct., 11(6), 481-487. 
  27. Timoshenko, S.P. (1921). "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41, 744-746. 
  28. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, Tokyo. 
  29. Timoshenko, S.P. and Goodier, J.N. (1984), Theory of Elasticity, 3rd edition, McGraw-Hill, New York. 
  30. Trahair, N.S. (1993), Flexural-torsional Buckling of Structures, Chapman and Hall, London. 
  31. Vlasov, V.Z. (1961), Thin-walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem. 
  32. Yu, W., Hodges, D.H., Volovoi, V.V. and Fuchs, E.D. (2005), "A generalized vlasov theory for composite beams", Thin Wall. Struct., 43(9), 1493-1511. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일