$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미래 기후변화 및 그에 따른 재배시기 조정이 벼 생태형별 생육기간과 생육온도에 미치는 영향
Impacts of Climate Change and Follow-up Cropping Season Shift on Growing Period and Temperature in Different Rice Maturity Types 원문보기

Korean journal of crop science = 韓國作物學會誌, v.56 no.3, 2011년, pp.233 - 243  

이충근 (국립식량과학원) ,  곽강수 (농촌진흥청) ,  김준환 (국립식량과학원) ,  손지영 (국립식량과학원) ,  양원하 (국립식량과학원)

초록
AI-Helper 아이콘AI-Helper

과거부터 현재까지 한반도의 온난화는 전 지구적 온난화에 비하여 심하였으며, 미래에도 더욱 심할 것으로 예상되고 있다. 기후변화에 따른 온도상승은 보통 벼 수량을 감소시키고 품질 저하를 야기하는데, 이 양상은 벼 생육기간 및 그에 따른 생육온도에 크게 영향을 받으며, 벼 생육기간 및 생육온도 또한 이앙 및 파종시기와 같은 재배시기에 조정에 의해 크게 달라질 수 있다. 본 연구는 미래 기후변화 및 그에 따른 재배시기 조정 여부가 현재 우리나라 벼 품종의 생태형별 생육기간과 생육온도에 미치는 영향을 분석하고자 수행하였으며, 주요 결과는 다음과 같다. 1. 벼 생육모델 ORYZA2000을 이용하여 오대벼, 일품벼, 화성벼의 파종부터 출수기까지의 생육기간을 예측하였을 때 예측값이 관측값의 약 84% 설명할 수 있는 것으로 나타났는데, 예측오차 중 상당부분은 작물모형 자체의 문제보다는 육묘기 생육온도에 대한 정보부재 또는 불확실성 때문이며, 예측값과 관측값의 회귀직선과 1:1선 거의 일치하기 때문에 미래 기후변화 조건에서의 벼 생육기간 변화를 예측하는데 큰 문제가 없을 것으로 판단되었다. 2. 조생종은 전체 57개 지역 중 55개, 중생종은 51개, 중 만생종은 40개 지역에서 최적파종기가 설정되었는데, 전체적으로 최적파종기는 생육기간이 짧은 조생종에서 비교적 늦고, 생육기간이 긴 중만생종에서 빠른 경향이었으며, 벼 생태형에 관계없이 지구온난화가 진전될수록 최적파종기가 늦어지는 경향이었다. 3. 재배시기를 고정하였을 경우 지구온난화가 진전되면서 벼 출수기와 그에 따른 출수전 생육일수가 빨라졌는데, 조 중생종에 비해 중만생종의 생육기간이 크게 단축되는 경향이었고, 출수후 생육기간은 벼 생태형간 차이 없이 10일 정도 단축되었으며, 출수전에 비해 출수후 생육기간 단축 정도가 컸다. 4. 최적파종기를 기준으로 벼 재배시기를 조정하였을 경우 지구온난화가 진전되면서 출수기는 늦어졌으며, 출수후 생육기간 및 생육온도는 변화가 없었다. 재배시기를 고정하였을 때에 비해 출수전 생육온도는 크게 상승하였고, 생육기간은 크게 단축되었는데, 조 중만 생종에 비해 중만생종에서 그 경향이 심하였으며, 생육온도에 비해 생육기간 변화의 지역간 편차가 크게 나타났다. 5. 결론적으로 지구온난화가 진점됨에 따라 벼 생육온도가 상승하고 생육기간이 단축되어 벼 수량성 및 품질저하가 우려 되었는데, 특히 생육기간 단축이 큰 중만 생종의 피해가 클 것으로 예상되었으며, 기후변화에 따른 재배시기 조정은 벼 수량성 및 품질 결정에 영향력이 큰 등숙기간의 온도환경을 개선할 수 있지만 출수전 생육기간이 크게 단축되어 여전히 벼 수량성 감소를 경감시키는데 한계가 있는 것으로 판단되었다. 따라서 미래 기후변화에 대응하여 더욱 적극적인 재배기술과 품종개발이 요구된다.

Abstract AI-Helper 아이콘AI-Helper

This experiment was conducted to investigate the effect of future climate change on growing period and temperature in different rice maturity types as global warming progressed, where Odaebyeo, Hwaseongbyeo, Ilpumbyeo were used as a representative cultivar of early, medium, and medium-late rice matu...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구는 미래 기후변화 및 그에 따른 재배시기 조정 여부가 현재 우리나라 벼 품종의 생태형별 생육기간과 생육온도에 미치는 영향을 분석하고, 그에 따라 대두되는 문제점을 파악하여 향후 기후변화에 대응하여 벼 연구 방향을 수립하는데 기초자료를 제공하고자 수행하였다.
  • 실제로 우리나라에서 재배되고 있는 품종 중 중만생종은 비교적 최적파종기에 근접해서 파종을 하고 있으나 조생종 및 중만생종 품종은 대체적으로 최적파종기에 비해 일찍 파종되고 있으며 지역별로 최적파종기를 준수하여 파종하는 정도가 매우 다르게 나타나고 있다. 따라서 현재의 파종기 조건을 적용해서 분석할 경우에는 기후변화에 따라 재배시기를 조정할 때 벼 생태형별로 조정 기준이 달라지므로 본 연구에서는 객관적인 평가를 위해 벼 생태형별로 최적파종기를 기준으로 분석하였다. 농촌진흥청(2004)은 벼 품종 및 재배지역에 따라 등숙기 냉해 등 기상재해에 대한 안정성을 고려하여 최적 등숙온도를 22.
  • 기후변화에 따른 온도상승은 보통 벼 수량을 감소 시키고 품질 저하를 야기하는데, 이 양상은 벼 생육기간 및 그에 따른 생육온도에 크게 영향을 받으며, 벼 생육기간 및 생육온도 또한 이앙 및 파종시기와 같은 재배시기에 조정에 의해 크게 달라질 수 있다. 본 연구는 미래 기후변화 및 그에 따른 재배시기 조정 여부가 현재 우리나라 벼 품종의 생태형별 생육기간과 생육온도에 미치는 영향을 분석하고자 수행하였으며, 주요 결과는 다음과 같다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
최근 100년간 세계의 평균기온이 얼마나 상승 하였는가? 기후변화란 기후 특성의 평균이나 변동성의 변화를 통해 확인 가능하고 수십 년 혹은 그 이상 오래 지속되는 기후상태 변화를 뜻하는데, 자연적 변동성 때문이든 인간 활동에 따른 결과이든 시간경과에 따른 모든 기후변화를 일컫는다 (IPCC, 2007). 최근 100년간(1906~2005년) 세계의 평균기온이 0.74℃ 상승한 반면, 1904년 이후 2000년까지 우리나라의 평균기온은 1.5℃ 상승하였으며(국립기상연구소, 2004), A1B의 기상시나리오에 따르면 100년 후 전지구적인 기온 상승은 2.
기후변화란 무엇인가? 기후변화란 기후 특성의 평균이나 변동성의 변화를 통해 확인 가능하고 수십 년 혹은 그 이상 오래 지속되는 기후상태 변화를 뜻하는데, 자연적 변동성 때문이든 인간 활동에 따른 결과이든 시간경과에 따른 모든 기후변화를 일컫는다 (IPCC, 2007). 최근 100년간(1906~2005년) 세계의 평균기온이 0.
미래 기후변화 및 그에 따른 재배시기 조정 여부가 현재 우리나라 벼 품종의 생태형별 생육기간과 생육온도에 미치는 영향을 분석 한 결과는? 본 연구는 미래 기후변화 및 그에 따른 재배시기 조정 여부가 현재 우리나라 벼 품종의 생태형별 생육기간과 생육온도에 미치는 영향을 분석하고자 수행하였으며, 주요 결과는 다음과 같다. 1. 벼 생육모델 ORYZA2000을 이용하여 오대벼, 일품벼, 화성벼의 파종부터 출수기까지의 생육기간을 예측하였을 때 예측값이 관측값의 약 84% 설명할 수 있는 것으로 나타났는데, 예측오차 중 상당부분은 작물모형 자체의 문제보다는 육묘기 생육온도에 대한 정보부재 또는 불확실성 때문이며, 예측값과 관측값의 회귀직선과 1:1선 거의 일치하기 때문에 미래 기후변화 조건에서의 벼 생육기간 변화를 예측하는데 큰 문제가 없을 것으로 판단되었다. 2. 조생종은 전체 57개 지역 중 55개, 중생종은 51개, 중 만생종은 40개 지역에서 최적파종기가 설정되었는데, 전체적으로 최적파종기는 생육기간이 짧은 조생종에서 비교적 늦고, 생육기간이 긴 중만생종에서 빠른 경향이었으며, 벼 생태형에 관계없이 지구온난화가 진전될수록 최적파종기가 늦어지는 경향이었다. 3. 재배시기를 고정하였을 경우 지구온난화가 진전되면서 벼 출수기와 그에 따른 출수전 생육일수가 빨라졌는데, 조 중생종에 비해 중만생종의 생육기간이 크게 단축되는 경향이었고, 출수후 생육기간은 벼 생태형간 차이 없이 10일 정도 단축되었으며, 출수전에 비해 출수후 생육기간 단축 정도가 컸다. 4. 최적파종기를 기준으로 벼 재배시기를 조정하였을 경우 지구온난화가 진전되면서 출수기는 늦어졌으며, 출수후 생육기간 및 생육온도는 변화가 없었다. 재배시기를 고정하였을 때에 비해 출수전 생육온도는 크게 상승하였고, 생육기간은 크게 단축되었는데, 조 중만 생종에 비해 중만생종에서 그 경향이 심하였으며, 생육온도에 비해 생육기간 변화의 지역간 편차가 크게 나타났다. 5. 결론적으로 지구온난화가 진점됨에 따라 벼 생육온도가 상승하고 생육기간이 단축되어 벼 수량성 및 품질저하가 우려 되었는데, 특히 생육기간 단축이 큰 중만 생종의 피해가 클 것으로 예상되었으며, 기후변화에 따른 재배시기 조정은 벼 수량성 및 품질 결정에 영향력이 큰 등숙기간의 온도환경을 개선할 수 있지만 출수전 생육기간이 크게 단축되어 여전히 벼 수량성 감소를 경감시키는데 한계가 있는 것으로 판단되었다. 따라서 미래 기후변화에 대응하여 더욱 적극적인 재배기술과 품종개발이 요구된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (22)

  1. 국립기상연구소. 2004. 기후변화협약 대응 지역기후 시나리오 산출 기술개발(III), 권원태 외 12명, 기상연구소보고서 MR040C03. pp. 510. 

  2. 국립기상연구소. 2007. 기후변화협약대응 지역기후시나리오 활용기술기발(III). 국립기상연구소. pp. 599. 

  3. 농촌진흥청. 1981. 수도냉해실태분석과 종합기술대책. pp. 168. 

  4. 농촌진흥청. 2004. 지역 및 지대별 고품질 쌀 생산을 위한 이앙적기, 적정 질소시비량 및 수확적기. pp. 5-131. 

  5. 농촌진흥청. 2004. 고품질 쌀 생산을 위한 재배 및 수확 후 관리기술, 농촌진흥청. pp. 155. 

  6. 윤성호, 이정택. 2001. 기후변화에 따른 벼 적정 등숙기간의 변동과 대책. 한국농림기상학회지. 3(1) : 55-70. 

  7. 이충근. 2008. 우리나라 환경 및 품종에서 벼 생육예측을 위한 품종모수 추정. pp. 120-134. 벼 종실중 및 종실질소함량 추정모델 개발 및 적용, 서울대학교 박사학위논문. pp. 184. 

  8. Bouman, B. A. M, Kropff, M. J., Tuong, T. P., Wopereis, M. C. S., ten Berge H. F. M., van Laar, H. H. 2001. ORYZA2000 : modeling lowland rice. Los Banos (Philippines); International Rice Research Institute, and Wageningen: Wageningen University and Research Centre. pp. 235. 

  9. IPCC. 2007. Climate change 2007 : The physical science basis. 

  10. Ishimaru, T., Hirabayashi, H., Ida, M., Takai T., San-Oh, Y. A., Yoshinaga, S., Ando, I., Ogawa, T., Kondo, M. 2010. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann. Bot. doi:10.1093/aob/mcq124. 

  11. Jagadish, S. V. K., Muthurajan, R., Oane, R., Wheeler, T. R., Heuer, S, Bennett, J., Craufurd, P. Q. 2010a. Physiological and proteomic approaches to dissect reproductive stage heat tolerance in rice (Oryza sativa L.). J. Exp. Bot. 61 : 143-156. 

  12. Jagadish, S. V. K., Sumfleth, K., Howell, G., Redona, E., Wassmann, R., Heuer, S. 2010b. Temperature effects on rice: significance and possible adaptation pp. 19-26. In Advanced Technologies of RiceProduction for Coping withClimate Change: 'No Regret' Options for Adaptation and Mitigation and their Potential Uptake. Los Banos (Philippines); International Rice Research Institute. 

  13. Jagadish, S. V. K., Craufurd, P. Q., Wheeler, T. R. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58 : 1627-1635. 

  14. Kobata, T., Uemuki, N. 2004. High temperatures during the grain-filling period do not reduce the potential grain dry matter increas of rice. Agron. J. 96 : 406-414. 

  15. Kondo, M. 2009. Effect of global warming on rice culture and adoptive strategies. International symposium 'Rice research in the era of global warming'. pp. 1-9. 

  16. Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., Centeno, G. S., Khush, G. S., Cassman, K. G. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. 101 : 9971-9975. 

  17. Prasad, P. V. V., Boote, K. J., Allen, L. H., Sheehy, J. E., Thomas, J. M. G. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95 : 398-411. 

  18. Satake T., Yoshida S. 1978. High temperature-induced sterility in indica rices at flowering. J. Crop Sci. 47 : 6-17. 

  19. Sato, K., Inaba, K. 1976. High temperature injuries to ripening of the rice plant. 5. An early decline of the assimilate storing ability of rice grains under high temperature. Proc. Crop Sci. Soc. Jpn. 45 : 156-161. 

  20. Suzuki, M. 1980. Stuies on distinctive patterns of dry matter production in the building process of grain yields in rice plants grown in the warm region in Japan. Bull. Kyushu Nat. Agri. Exp. Sta. 20 : 429-494. 

  21. Yoshida, S., Satake, T., Mackill, D. 1981. High temperature stress. IRRI Res. Pap. Ser. 67 : 1-15. 

  22. Yoshida, S. 1981. Fundamentals of rice crop science. International Rice Research Institute, Los Banos, Philippines. pp. 269. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로