$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

The antimicrobial effects of silver (Ag) ion or salts are well known. Recently, silver nanoparticle is attracting an interest in a wide variety of fields since it has been known to be safe and effective as an antimicrobial agent against a broad spectrum of microorganisms. Although silver nanoparticl...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 글에서는 은나노 입자(Ag0)에 대한 기존의 연구 결과들을 토대로 미생물 불활성화 효과와 기작, 응용에 대하여 정리하고자 하였다. 은나노 입자는 생물 내 단백질 불활성, DNA 손상, 활성산소(Reactive Oxygen Species, ROS)생성, 직접적인 세포막 영향 등을 통한 효과적인 미생물 불활성화 능력이 연구되어 있고 이를 응용한 다양한 제품들이 상품화 되고 있다.
  • 하지만 은나노 입자의 항균 성능, 미생물 불활성화 기작에 대한 전반적인 이해가 아직은 부족한 실정이다. 은 이온 (Ag+)과 은나노 입자(Ag0)의 명칭이 구분 없이 남용되고 있고, 정확하지 않은 향균 성능의 결과 및 과장된 효과, 불활성화 기작에 대한 정확한 이해가 필요한 시점에서 본 글을 통해 기존 연구를 중심으로 은나노 입자의 향균 성능과 미생물 불활성화 기작을 살펴보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
은 이온의 한계는 무엇인가? 은 이온의 경우 은 이온이 함유된 용액 상태에서 사용해야 하거나 보다 물에 잘 용해 될 수 있도록 하는 특정 물질에 이온 결합을 시켜야 응용이 가능하다는 제한이 있다[17]. 반면 은나노 입자는 나노(1~100 nm) 크기로써 고체 상태로도 제조가 가능하고 지속성이 뛰어나서 생활 용품 및 의료용품으로 연구 및 개발이 활발히 이루어지고 있다.
은의 특징은 무엇인가? 오래 전부터 인류는 미생물에 의한 감염성 질환에 대비하고 치료를 목적으로 생약성분이나 금속계 항균 물질을 이용하였는데 은(Ag)이 그 중 하나이다. 은은 인체에 해가 없고 독성이 없으며, 미생물 체내의 신진대사 기능을 다방면으로 억제하여 650여 종류의 유해 세균을 죽이는 것으로 알려져 있다[27]. 이러한 신진대사 기능 억제 이외에도 금속 은(Ag) 이 방출하는 은 이온(Ag+)의 전기적 능력으로 인해 미생물의 생식기능에 영향을 주어 향균 및 살균 작용을 하는 것 또한 알려져 있다[46].
은나노 입자의 합성 방법에는 무엇이 있는가? 은나노 입자의 합성 방법에는 여러 방법들이 있다(Table 1). AgNO3(silver nitrate)을 이용한 방법, UV light을 이용한 광 환원법과 다양한 종의 박테리아나 곰팡이들을 이용한 생체합성 등의 다양한 방법이 있다[10, 14, 29, 40, 49]. 이러한 다양한 방법들은 각각의 특별한 장단점이 존재하는데 생성되는 크기나 모양, 안정성 또는 순도 등에서 차이점을 보인다[6].
질의응답 정보가 도움이 되었나요?

참고문헌 (60)

  1. Alt, V., T. Bechert, P. Steinrucke, M. Wagener, P. Seidel, E. Dingeldein, D. Scheddin, E. Domann, and R. Schnettler. 2004. Nanoparticulate silver. A new antimicrobial substance for bone cement. Orthopade. 33: 885-892. 

  2. Arakawa, H., J. F. Neault, and H. A. Tajmir-Riahi. 2001. Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys. J. 81: 1580-1587. 

  3. Butkus, M. A., M. P. Labare, J. A. Starke, K. Moon, and M. Talbot. 2004. Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl. Environ. Microbiol. 70: 2848-2853. 

  4. Carlson, C. et al. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112: 13608-13619. 

  5. Cha, K., H. W. Hong, Y. G. Choi, M. J. Lee, J. H. Park, H. K. Chae, G. Ryu, and H. Myung. 2008. Comparison of acute responses of mice livers to short-term exposure to nanosized or micro-sized silver particles. Biotechnol. Lett. 30: 1893-1899. 

  6. Chaloupka, K., Y. Malam, and A. M. Seifalian. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology. 28: 580- 588. 

  7. Chen, P. et al. 2007. Synthesis of silver nanoparticles by γ- ray irradiation in acetic water solution containing chitosan. Radiat. Phys. Chem. 76: 1165-1168. 

  8. Choi, O. and Z. Hu. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 42: 4583-4588. 

  9. Cohen, M. L. 1992. Epidemiology of drug resistance; implications for a post-antimicrobial era. Science 257: 1050- 1055. 

  10. Courrol, L. C., F. R. O. Silva, and L. Gomes. 2007. A simple method to synthesize silver nanoparticles by photoreduction. Colloids Surf. A 305: 54-57. 

  11. Davis, R. L. and S. F. Etris. 1997. The development and functions of silver in water purification and disease control. Catalysis Today. 36: 107. 

  12. Fayaz, A. M., K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6: 103-109. 

  13. Feng, Q. L, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668. 

  14. Gajbhiye, M., J. Kesharwani, A. Ingle, A. Gade, and M. Rai. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5: 382-386. 

  15. Gogoi, S. K., P. Gopinath, A. Paul, A. Ramesh, S. S. Ghosh, and A. Chattopadhyay. 2006. Green fluorescent proteinexpressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nano-particles. Langmuir 22: 9322-9328. 

  16. Graf, P. et al. 2009. Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chemistry 15: 5831-5844. 

  17. Greenfeld, J. I., L. Sampath, S. J. Popilskis, S. R. Brunnert, S. Stylianos, and S. Modak. 1995. Decreased bacterial adherence and biofilm formation on chlorhexidine and silver sulfadiazine-impregnated central venous catheters implanted in swine. Crit. Care Med. 23: 894-900. 

  18. Gutierrez, F. M., P. L. Olive, A. Banuelos, E. Orrantia, N. Nino, E. M. Sanchez, F. Ruiz, H. Bach, and Y. A. Gay. 2010. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6: 681-688. 

  19. Holt, K. B. and A. J. Bard. 2005. The Interaction of Silver (I) Ions with the Respiratory Chain of Escherichia coli: An Electrochemical and Scanning Electrochemical Microscopy Study of the Antimicrobial Mechanism of Micromolar $Ag^{+}$ . Biochemistry 44: 13214-13223. 

  20. Imran, M., A. M. Revol-Junelles, A. Martyn, E. A. Tehrany, M. Jacquot, M. Linder, and S. Desobry. 2010. Active food packaging evolution: transformation from micro- to nanotechnology. Food. Science and Nutrition 50: 799-821. 

  21. Izatt, R. M., J. J. Christensen, and J. H. Rytting. 1971. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev. 71: 439-481. 

  22. Jain, P. and T. Pradeep. 2005. Potential of silver nanoparticle -coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90: 59-63. 

  23. Jung, W. K. et al. 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74: 2171?2178. 

  24. Kalishwaralal, K., S. Barathmanikanth, S. R. K. Pandian, V. Deepak, and S. Gurunathan. 2010. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B. 79: 340-344. 

  25. Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101. 

  26. Kim, J. Y., C. Lee, M. Cho, and J. Yoon. 2008. Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res. 42: 356-362. 

  27. Kim, J. Y., T. Y. Kim, and J. Y. Yoon. 2009. Antimicrobial Activity and Mechanism of Silver. J. Korean Ind. Eng. Chem. 20: 251-257. 

  28. Kim, K. J., W. S. Sung, B. K. Suh, S. K. Moon, J. S. Choi, J. G. Kim, and D. G. Lee. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 22: 235-242. 

  29. Kim, K. J., W. S. Sung, S. K. Moon, J. S. Choi, J. G. Kim, and D. G. Lee. 2008. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 18: 1482-1484. 

  30. Kokura, S., O. Handa, T. Takagi, T. Ishikawa, Y. Naito, and T. Yoshikawa. 2010. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6: 570-574. 

  31. Kora, A. J. et al. 2009. Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization. Mater. Sci. Eng. C. 29: 2104-2109. 

  32. Kumar, A., P. K. Vemula, P. M. Ajayan, and G. John. 2008. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7: 236-241. 

  33. Landeen, L. K., M. T. Yahya, and C. P. Gerba. 1989. Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila. Appl. Environ. Microbiol. 55: 3045-3050. 

  34. Lara, H. H., N. V. Ayala-Nunez, L. Ixtepan-Turrent, and C. Rodriguez-Padilla. 2010. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnology 8: 1. 

  35. Liau, S. Y., D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell. 1997. Interaction of silver-nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25: 279-283. 

  36. Li, P., J. Li, C. Wu, Q. Wu, and J. Li. 2005. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16: 1912-1917. 

  37. Lok, C. N. et al. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12: 527- 534. 

  38. Lu, Y., G. L. Liu, and L. P. Lee. 2005. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano. Lett. 5: 5-9. 

  39. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2345-2353. 

  40. Nanda, A. and M. Saravanan. 2009. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5: 452-456. 

  41. Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Apple. Environ. Microbiol. 73: 1712-1720. 

  42. Park, H. J., J. Y. Kim, J. Kim, J. H. Lee, J. S. Hahn, M. B. Gu, and J. Yoon. 2009. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 43: 1027-1032. 

  43. Pedahzur, R., H. I. Shuval, and S. Ulitzur. 1997. Silver and hydrogen peroxide as potential drinking water disinfectants: Their bactericidal effects and possible modes of action. Water Sci. Technol. 35: 87-93. 

  44. Pedahzur, R., O. Lev, B. Fattal, and H. I. Shuval. 1995. The interaction of silver ions and hydrogen peroxide in the inactivation of E. coli: a preliminary evaluation of a new long acting residual drinking water disinfectant. Water Sci. Technol. 31: 123-129. 

  45. Ravelin, J. 1869. Chemistry of vegetation. Sci. Nat. 11: 93-102. 

  46. Roh, J. Y. et al. 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. 43: 3933-3940. 

  47. Sekhon, B. S. and S. R. Kamboj. 2010. Inorganic nanomedicine-part 2. Nanomedicine 6: 612-618. 

  48. Shahverdi, A. R. et al. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 42: 919-923. 

  49. Shahverdi, A. R., A. Fakhimi, H. R. Shahverdi, and S. Minaian. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3: 168-171. 

  50. Shaligram, N. S. et al. 2009. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 44: 939-943. 

  51. Shrivastava, S. 2007. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18: 225103-225112. 

  52. Sondi, I. and B. S. Sondi. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275: 177-182. 

  53. Tian, J., K. K. Wong, C. M. Ho, C. N. Lok, W. Y. Yu, C. M. Che, J. F. Chiu, and P. K. Tam. 2007. Topical delivery of silver nanoparticles promotes wound healing. Chem. Med. Chem. 2: 129-136. 

  54. Tien, D. C. et al. 2008. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus. Med. Eng. Phys. 30: 948-952. 

  55. Vigneshwaran, N. et al. 2006. A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res. 341: 2012-2018. 

  56. Xu, G-N. et al. 2008. Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction. Colloids Surf. A. 320: 222-226. 

  57. Yamanaka, M. et al. 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71: 7589-7593. 

  58. Yang, Q., F. Wang, K. Tang, C. Wang, Z. Chen, and Y. Qian. 2002. The formation of fractal Ag nanocrystallites via γ- irradiation route in isopropyl alcohol. Mater. Chem. Phys. 78: 495-500. 

  59. Yang, W. J. et al. 2009. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 20: 085102. 

  60. Yeo, S. Y., H. J. Lee, and S. H. Jeong. 2003. Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci. 38: 2143-2147. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로