$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

난배양성 토양세균을 위한 신배양기술의 고찰과 향후 발전 방향

Review and Future Development of New Culture Methods for Unculturable Soil Bacteria

Korean journal of microbiology = 미생물학회지, v.47 no.3, 2011년, pp.179 - 187  

김재수 (경기대학교 자연과학대학 생명과학과)

초록

고찰을 통해 난배양성 토양세균의 특징과 배양에 성공한 사례 및 성공하기 위해 알아야 될 지식들이 무엇인지에 대해 기술하였다. 먼저 배지는 목적한 세균이 토양에서 느리게 성장하다가 실험실의 빠른 성장조건으로 전환하도록 알맞게 선택되어야 하는데 일반적으로 기질, 질소 및 인 등의 농도를 낮게 조절해야 한다. 새로운 배지를 만들기 위해서는 분자생태학적 연구도 병행되어야 한다. 세균 세포 간 음성적 상호작용을 줄이기 위해 평판배양 시 접종량도 평판 당 세포수가 50개 이하로 조절해야 한다. pH나 염농도 같은 성장조건은 실제 환경조건과 맞춰야 하며 배양온도는 낮거나 다양하게 그리고 배양기간은 길게 잡아야 한다. 새로운 배지에서 분리될 수많은 토양 미생물 콜로니들 중에서 단지 몇 개만이 난배양성이므로 이들이 기존에 배양이 되지 않았던 미생물인지를 신속 정확히 검출하는 방법이 필요하다. 또한 많은 토양세균들이 군집 내에서 서로 협력하며 살아가기 때문에 공동배양이나 상등액을 이용해서 토양 미생물을 농화증식하고 이를 순수 분리하면 배양에 성공할 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

This review describes the characteristics of various unculturable soil bacteria, successfully-cultivating examples of those bacteria, and the diverse factors to be considered for successful cultivation. Most importantly, the selection of proper media is very important because unculturable bacteria d...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 고찰을 통해 난배양성 토양세균의 특징과 배양에 성공한 사례 및 성공하기 위해 알아야 될 지식들이 무엇인지에 대해 기술하였다. 먼저 배지는 목적한 세균이 토양에서 느리게 성장하다가 실험실의 빠른 성장조건으로 전환하도록 알맞게 선택되어야 하는데 일반적으로 기질, 질소 및 인 등의 농도를 낮게 조절해야 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
DNA 염기서열을 이용한 계통분류학적 분석을 통해 밝혀진, 거의 모든 토양에 존재하는 4가지의 주요 분류군은 무엇인가? DNA 염기서열을 이용한 계통분류학적 분석을 통해 거의 모든 토양에 존재하는 4가지의 주요 분류군이 밝혀졌다. 이들은 아강 수준의 Alphaproteobacteria와 문 수준의 Actinobacteria, Acidobacteria 및 Verrucomicrobia로 16S rRNA clone library 연구 중 75% 이상을 차지한다(39). 기타 주요 분류군은 Proteobacteria 문의 4개의 아강과 문 수준의 Bacteriodetes, Firmicutes, Chloroflexi 및 Planctomydetes가 대부분 연구에서 25%-75%를 차지하였다(39).
현재까지 추정되는 미생물종은 몇 종인가? 자연에는 수많은 미생물종이 존재한다. 현재까지 추정되는 미생물종은 약 105에서 106 종으로 추정되고 있으며(2, 87), 그중에 단지 수천 종만이 순수배양을 통해 분리되었고, 약 7,000 종의 세균 및 고세균이 계통 분류되었다(52). 토양을 예로 든다면 토양미생물종의 약 1% 미만이 전통적인 배양방법으로 배양이 가능하고 나머지 99% 이상의 종들은 배양이 안 된다.
미생물을 배양함에 있어, 전통적인 방법의 약점은 무엇인가? 이렇게 전통적인 배양방법의 한계 때문에 많은 토양세균들의 특성이 아직까지 파악되지 않았고 그로 인해 가능한 많은 자원의 활용이 제한되어 있어 안타까운 실정이다. 전통적인 방법의 약점은 (i) 힘들고, (ii) 시간의 소모가 많으며, (iii) 특히 너무 선택적이라 특별한 미생물의 성장에만 치우쳐있다. 이런 인공배지의 특징은 (i) 극도로 높은 기질의 농도와 (ii) 성장을 위한 특별한 영향성분의 부재 그리고 (iii) 배지에 포함된 저해요소 또는 배지의 치사효과(lethal effect)가 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (98)

  1. Alain, K. and J. Querellou. 2009. Cutivating the uncultured: limits, advances and future challenges. Extremophiles 13, 583-594. 

  2. Allsopp, D., R.R. Colwell, and D.L. Hawksworth. 1995. Microbial diversity and ecosystem function. CAB International, Wallingford, UK. 

  3. Andrews, J.H. and R.F. Harris. 1986. r- and K-selection and microbial ecology. Adv. Microb. Ecol. 9, 99-147. 

  4. Balestra, G.M. and I.J. Misaghi. 1997. Increasing the efficiency of the plate count method for estimating bacterial diversity. J. Microbiol. Methods 30, 111-137. 

  5. Bartscht, K., H. Cypionka, and J. Overmann. 1999. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol. Ecol. 28, 249-259. 

  6. Batchelor, S.E., M. Cooper, S.R. Chhabra, L.A. Glover, G.S. Stewart, P. Williams, and J.I. Prosser. 1997. Cell densityregulated recovery of starved biofilm populations of ammoniaoxidizing bacteria. Appl. Environ. Microbiol. 63, 2281-2286. 

  7. Bremner, J.M. and L.A. Douglas. 1971. Use of plastic films for aeration on soil incubation experiments. Soil Biol. Biochem. 3, 289-296. 

  8. Bruns, A., H. Cypionka, and J. Overmann. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 68, 3978-3987. 

  9. Bruns, A., U. Nubel, H. Cypionka, and J. Overmann. 2003. Effect of signal compounds and incubation conditions on the culturability of fresh-water bacterioplankton. Appl. Environ. Microbiol. 69, 1980-1989. 

  10. Bussmann, I., B. Philipp, and B. Schink. 2001. Factors influencing the cultivability of lake water bacteria. J. Microbiol. Methods 47, 41-50. 

  11. Calcott, P.H. and J.R. Postgate. 1972. On substrate-accelerated death in Klebsiella aerogenes. J. Gen. Microbiol. 70, 115-122. 

  12. Camilli, A. and B.L. Bassler. 2006. Bacterial small-molecule signaling pathways. Science 311, 1113-1116. 

  13. Casida, L.E. 1968. Methods for the isolation and estimation of activity of soil bacteria, pp. 97-122. In T.R.G. Gray and D. Parkinson (eds.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, UK. 

  14. Cayley, S., M.T. Record, and B.A. Lewis. 1989. Accumulation of 3 -(N-morpholino)-propanesulfonate by osmotically stressed Escherichia coli K-12. J. Bacteriol. 171, 3597-3602. 

  15. Chin, K.J., D. Hahn, U. Hengstmann, W. Liesack, and P.H. Janssen. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65, 5042-5049. 

  16. Christner, B.C., E. Mosley-Thompson, L.G. Thompson, V. Zagorodnov, K. Sandman, and J.N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144, 479-485. 

  17. Crocetti, G.R., J.F. Banfield, J. Keller, P.L. Bond, and L.L. Blackall. 2002. Glycogen-accumulating organisms in laboratoryscale and full-scale wastewater treatment processes. Microbiology 148, 3353-3364. 

  18. Davis, K.E.R., S.J. Joseph, and P.H. Janssen. 2005. Effects of growth medium, inoculum size, and incubation time on the culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71, 826-834. 

  19. Davis, K.E.R., P. Sangwan, and P.H. Janssen. 2011. Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony forming soil bacteria. Environ. Microbiol. 13, 798-805. 

  20. De Spiegeleer, P., J. Sermon, A. Lietaert, A. Aertsen, and C.W. Michiels. 2004. Source of tryptone in growth medium affects oxidative stress resistance in Escherichia coli. J. Appl. Microbiol. 97, 124-133. 

  21. Eichorst, S.A., J.A. Breznak, and T.M. Schmidt. 2007. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73, 2708-2717. 

  22. Eilers, H., J. Pernthaler, J. Peplies, F.O. Glockner, G. Gerdts, and R. Amann. 2001. Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl. Environ. Microbiol. 67, 5134-5142. 

  23. Ensign, S.A., F.J. Small, J.R. Allen, and M.K Sluis. 1998. New roles for $CO_2$ in the microbial metabolism of a liphatic epoxides and ketones. Arch. Microbiol. 169, 179-187. 

  24. Ferrari, B.C., S.J. Binnerup, and M. Gillings. 2005. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71, 8714-8720. 

  25. Fischer, H. 1909. Bakteriologisch-chemishe Untersuchungen. Bakteriologischer Teil. Landw. Jahrb. 38, 355-364. 

  26. Freeman, R., J. Dunn, J. Magee, and A. Barrett. 2002. The enhancement of isolation of mycobacteria from a rapid liquid culture system by broth culture supernate of Micrococcus luteus. J. Med. Microbiol. 51, 92-93. 

  27. Frohlich, J. and H. Konig. 2000. New techniques for the isolation of single prokaryotic cells. FEMS Microbiol. Rev. 24, 567-572. 

  28. Furlong, M.A., D.R. Singleton, D.C. Coleman, and W.B. Whitman. 2002. Molecular and culture-based and analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68, 1265-1279. 

  29. Gray, T.R.G., P. Baxby, I.R. Hill, and M. Goodfellow. 1968. Direct observation of bacteria in soil, pp. 171-197. In T.R.G. Gray and D. Parkinson (eds.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, UK. 

  30. Guan, L.L. and K. Kamino. 2001. Bacterial response to siderophore and quorum-sensing chemical signals in the seawater microbial community. BMC Microbiol. 1, 27. 

  31. Harris, D. and E.A. Paul. 1994. Measurements of bacterial growth rates in soil. Appl. Soil Ecol. 1, 277-290. 

  32. Hattori, T. 1976. Plate count of bacteria in soil on a diluted nutrient broth as a culture medium. Rep. Inst. Agric. Res. Tohoku Univ. 27, 23-30. 

  33. Hattori, T. 1980. A note on the effect of different types of agar on plate count of oligotrophic bacteria in soil. J. Gen. Appl. Microbiol. 26, 373-374. 

  34. Hattori, T. and R. Hattori. 1976. The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit. Rev. Microbiol. 4, 423-461. 

  35. Hattori, R. and T. Hattori. 1980. Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media. J. Gen. Appl. Microbiol. 26, 1-14. 

  36. Hattori, S., A.S. Galushko, Y. Kamagata, and B. Schink. 2005. Operation of the CO dehydrogenase/acetyl-CoA pathway both in acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J. Bacteriol. 187, 3471-3476. 

  37. Hattori, S., Y. Kamagata, S. Hanada, and H. Shoun. 2000. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 50, 1601-1609. 

  38. Huber, H., M.J. Hohn, R. Rachel, T. Fuchs, V.C. Wimmer, and K.O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63-67. 

  39. Hugenholtz, P., B.M. Goegel, and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774. 

  40. Ishikuri, S. and T. Hattori. 1985. Formation of bacterial colonies in successive time intervals. Appl. Environ. Microbiol. 49, 870-873. 

  41. James, N. and M. Sutherland. 1940. Effect of numbers of colonies per plate on the estimate of the bacterial population in soil. Can. J. Res. Section C. 18, 347-356. 

  42. Janssen, P.H., P.S. Yates, B.E. Grinton, P.M. Taylor, and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391-2396. 

  43. Jensen, V. 1962. Studies on the microflora of Danish beech forest soils. I. The dilution plate count technique for enumeration of bacteria and fungi in soil. Zentralbl. Bakteriol. Parasitenkd. Abt. 2. 116, 13-32. 

  44. Jensen, V. 1968. The plate count technique, pp. 158-170. In T.R.G. Gray and D. Parkinson (eds.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, UK. 

  45. Joseph, S.J., P. Hugenholtz, P. Sangwan, C.A. Osborne, and P.H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69, 7210-7215. 

  46. Kaeberlein, T., K. Lewis, and S.S. Epstein. 2002. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 296, 1127-1129. 

  47. Kell, D.B., A.S. Kaprellyants, and A. Grafen. 1995. On pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol. Evolution 10, 126-129. 

  48. Kolter, R., D.A. Siegele, and A. Tormo. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47, 855-874. 

  49. Kushmaro, A. and S. Geresh. 2004. Method for isolating and culturing unculturable microorganisms. International Applicatiojn Published under the Patent Cooperation Treaty (PCT), International Publication Number: WO 2004/022698 A2. 

  50. Leadbetter, J.R. 2003. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr. Opin. Microbiol. 6, 274-281. 

  51. Lilburn T.G., K.S. Kim, N.E. Ostrom, K.R. Byzek, J.R. Leadbetter, and J.A. Breznak. 2001. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495-2498. 

  52. Madigan, M.T., J.M. Martinko, P.V. Dunlap, and D.P. Clark. 2009. Brook Biology of Microorganisms, 12th ed., Pearson Benjamin Cummings, San Francisco, CA, USA. 

  53. Mason, T.G. and G. Blunden. 1989. Quaternary ammonium and tertiary sulfonium compounds of algal origin as alleviators of osmotic stress. Bot. Mar. 32, 313-316. 

  54. McCaig, A.E., S.J. Grayston, J.I. Prosser, and L.A. Glover. 2001. Impact of cultivation on characterization of species composition of soil bacterial communities. FEMS Microbiol. Ecol. 35, 37-48. 

  55. Miller, M.B. and B.L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165-199. 

  56. Mochizuki, M. and T. Hattori. 1986. Kinetics of microcolony formation of a soil olitrophic bacterium, Agromonas sp. FEMS Microbiol. Ecol. 38, 51-55. 

  57. Monciardini, P., L. Cavaletti, P. Schumann, M. Rohde, and S. Donadio. 2003. Conexibacterwoesii gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int. J. Syst. Evol. Microbiol. 53, 569-576. 

  58. Mukamolova, G.V., A.S. Kaprelyants, D.I. Young, M. Young, and D.B. Kell. 1998. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95, 8916-8921. 

  59. Mukamolova, G.V., N.D. Yanopolskaya, D.B. Kell, and A.S. Kaprelyants. 1998. On resuscitation from the dormant state of Micrococcus luteus. Antonie van Leeuwenhoek 73, 237-243. 

  60. Nadell, C.D., J.B. Xavier, and K.R. Foster. 2009. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206-224. 

  61. Novitsky, J.A. 1987. Microbial growth rates and biomass production in a marine sediment: evidence for a very active but mostly nongrowing community. Appl. Environ. Microbiol. 53, 2368-2372. 

  62. Ohno, M., I. Okano, T. Watsuji, T. Kakinuma, K. Ueda, and T. Beppu. 1999. Establishing the independent culture of a strictly symbiotic bacterium Symbiobacterium thermophilum from its supporting Bacillus strain. Biosci. Biotechnol. Biochem. 63, 1083-1090. 

  63. Ohno, M., H. Shiratori, M.J. Park, Y. Saitoh, Y. Kumon, N. Yamashita, A. Hirata, H. Nishida, K. Ueda, and T. Beppu. 2000. Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. Int. J. Syst. Evol. Microbiol. 50, 1829-1832. 

  64. Olsen, R.A. and L.R. Bakken. 1987. Viability of soil bacteria: optimization of plate-counting techniques and comparisons between total counts and plate counts within different size groups. Microb. Ecol. 13, 59-74. 

  65. Overmann, J. 2006. Principles of enrichment, isolation, cultivation and preservation of prokaryotes, pp. 80-136. In M. Doworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, and E. Stackebrandt (eds.), The Prokaryotes, 3rd ed. Vol. 1: Symbiotic Associations, Biotechnology, Applied Microbiology. Springer, New York, NY, USA. 

  66. Palumbo, A.V., C. Zhang, S. Liu, S.P. Scarborough, S.M. Pfiffner, and T.J. Phelps. 1996. Influence of media on measurement of bacterial populations in the subsurface. Appl. Biochem. Biotech. 57/58, 905-914. 

  67. Plugge, C.M. and A.J.M. Stams. 2002. Enrichment of thermophilic syntrophic anaerobic glutamate-degrading consortia using a dialysis membrane reactor. Microbiol. Ecol. 43, 379-387. 

  68. Postgate, J.R. and J.R. Hunter. 1964. Accelerated death of Aerobacter aerogenes starved in the presence of growth limiting substrates. J. Gen. Microbiol. 34, 459-473. 

  69. Reichenbach, H. and M. Dworkin. 1981. Introduction to the glidinh bacteria, pp. 315-327. In M.P. Starr, H. Stolp, H.G. Truper, A. Balows, and H.G. Schlegel (eds.), The Prokaryotes. A handbook on habitats, isolation, and identification of bacteria, vol. 1. Springer-Verlag, Heidelberg, Germany. 

  70. Rosch, C., A. Mergel, and H. Bothe. 2002. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol. 68, 3818-3829. 

  71. Sait, M., K.E.R. Davis, and P.H. Janssen. 2006. Effect of pH on the isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72, 1852-1857. 

  72. Sait, M., P. Hugenholtz, and P.H. Janssen. 2002. Cultivation of globally-distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4, 654-666. 

  73. Sangwan, P., X. Chen, P. Hugenholtz, and P.H. Hanssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70, 5875-5881. 

  74. Sangwan, P., S. Kovac, K.E.R. Davis, M. Sait, and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71, 8402-8410. 

  75. Schoenborn, L., P.S. Yates, B.E. Grinton, P. Hugenholtz, and P.H. Janssen. 2004. Liquid serial dilution is inferior to solid media for isolation of cultures representing the phylum level diversity of soil bacteria. Appl. Environ. Microbiol. 70, 4363-4366. 

  76. Sexstone, A.J., N.P. Revsbech, T.P. Parkin, and J.M. Tiedje. 1985. Direct measurement oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Amer. J. 49, 645-651. 

  77. Shleeva, M.O., K. Bagramyan, M.V. Telkov, G.V. Mukamolova, M. Young, D.B. Kell, and A.S. Kaprelyants. 2002. Formation and resuscitation of "non-culturable" cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary. Microbiology 148, 1581-1591. 

  78. Simon, H.M., C.E. Jahn, L.T. Bergerud, M.K. Sliwinski, P.J. Weimer, D.K. Willis, and R.M. Goodman. 2005. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl. Environ. Microbiol. 71, 4751-4760. 

  79. Simu, K. and A. Hagstrom. 2004. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl. Environ. Microbiol. 70, 2445-2451. 

  80. Sorheim, R., V.L. Torsvik, and J. Goksøyr. 1989. Phenotypic divergences between populations of soil bacteria isolated on different media. Microb. Ecol. 17, 181-192. 

  81. Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt, and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70, 4748-4755. 

  82. Streit, W.R. and R.A. Schmitz. 2004. Metagenomics-the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492-498. 

  83. Sun, Z. and Y. Zhang. 1999. Spent culture supernant of Mycobacterium tuberculosis H37Ra improved viability of aged cultures of this strain and allows small inocula to initiate growth. J. Bacteriol. 181, 7626-7628. 

  84. Suzuki, S., S. Horinouchi, and T. Beppu. 1988. Growth of a tryptophanas-producing thermophile, Symbiobacterium thermophilum gen. nov., sp. nov., is dependent on coculture with a Bacillus sp. J. Gen. Microbiol. 134, 2353-2362. 

  85. Tanaka, Y., S. Hanada, A. Manome, T. Tsuchida, R. Kurane, K. Nakamura, and Y. Kamagata. 2004. Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. Int. J. Syst. Evol. Microbiol. 54, 955-959. 

  86. Thornton, H.G. 1992. On the development of a standardized agar medium for counting soil bacteria, with especial regard to the repression of spreading colonies. Ann. Appl. Biol. 9, 241-274. 

  87. Tiedje, J.M. 1994. Microbioal diversity: of value to whom? ASM News 60, 524-525. 

  88. Torsvik, V., R. Sorheim, and J. Goksoyr. 1996. Total bacterial diversity in soil and sediment connunities - a review. J. Ind. Microbiol. 17, 170-178. 

  89. Ueda, K., H. Saka, Y. Ishikawa, T. Kato, Y. Takeshita, H. Shiratori, M. Ohno, K. Hosono, M. Wada, and T. Beppu. 2002. Development of a membrane dialysis bioreactor and its application to a large-scale culture of a symbiotic bacterium, Symbiobacterium thermophilum. Appl. Microbiol. Biotechnol. 60, 300-305. 

  90. Wang, J., C. Jenkins, R.I. Webb, and J.A. Fuerst. 2002. Isolation of Gemmata-like and Isophaera-like planctomycete bacteria from soil and freshwater. Appl. Environ. Microbiol. 68, 417-422. 

  91. Waterbury, J.B. 1991. The cyanobacteria-isolation, purification, and identification, pp. 149-196. In M.P. Starr, H. Stolp, H.G. Truper, A. Balows, and H.G. Schlegel (eds.), The prokaryotes. A handbook on habitats, isolation, and identification of bacteria, vol. 1. Springer-Verlag, Heidelberg, Germany. 

  92. West, S.A., S.P. Diggle, A. Buckling, A. Gardner, and A.S. Griffin. 2007. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53-77. 

  93. Widdel, F. 1987. New types of acetate-oxidazing, sulfatereducing Dessulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148, 286-291. 

  94. Widdel, F. and F. Bak. 1992. Gram-negative mesophilic sulfate-reducing, pp. 3352-3378. In A. Balows, H.G. Truper, M. Dworkin, W. Harder, and K.H Schleifer (eds.), The Prokaryotes. A handbook on the biology of bacteria: Ecophysiology, isolation, and identification, application, 2nd ed., vol. 4. Springer-Verlag, New York, NY, USA. 

  95. Winding, A., S.J. Binnerup, and J. Sørensen. 1994. Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl. Environ. Microbiol. 60, 2869-2875. 

  96. Winogradsky, S. 1949. Microbiologie du Sol. Problemes et Methodes. Masson, Paris, France. 

  97. Zengler, K., H.H. Richnow, R. Rossello-Mora, W. Michaelis, and F. Widdel. 1999. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266-269. 

  98. Zengler, K., G. Toledo, M. Rappe, J. Elkins, E.J. Mathur, J.M. Short, and M. Keller. 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99, 15681-15686. 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트