$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

The cell permeability and cytotoxic effects of different-sized zinc oxide (ZnO) particles were investigated using a human colorectal adenocarcinoma cell line called Caco-2. Morphological observation by scanning electron microscopy revealed that three zinc oxides with different mean particle sizes (Z...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • Zinc oxides with three different mean particle sizes (ZnO-1, 20 nm; ZnO-2, 90~200 nm; ZnO-3, 1~5 μM) were purchased from American elements (Los Angeles, CA, USA). Caco-2 cells (ATCC no. HTB-37) were obtained from the American Type Culture Collection (Manassas, VA, USA). Transwell inserts (cat.
  • Zinc oxides with three different mean particle sizes (ZnO-1, 20 nm; ZnO-2, 90~200 nm; ZnO-3, 1~5 μM) were purchased from American elements (Los Angeles, CA, USA).

데이터처리

  • The statistical significance among treatments was analyzed by a Student t-test or one-way analysis of variance (ANOVA) followed by Duncan’s multiple range test.

이론/모형

  • Cellular permeability of zinc oxide particles across Caco-2 monolayer. Samples were added to the apical side of the cells, and the permeated samples were determined from the basolateral side by the spectrophotometric method. Values are expressed as mean±SE (n=6).
본문요약 정보가 도움이 되었나요?

참고문헌 (29)

  1. Tarver T. 2006. Food nanotechnology. Food Technol 60: 22-26. 

  2. Park B. 2009. Nanotechnology for food safety. Cereal Foods World 54: 158-162. 

  3. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ. 2009. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53: 52-62. 

  4. Oberdorster G, Oberdorster E, Oberdorster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823-839. 

  5. Hoet P, Bruske-Hohlfeld I, Salata O. 2004. Nanoparticlesknown and unknown health risks. J Nanobiotechnol 2: 12-26. 

  6. Powers KW, Palazuelos M, Moudgil BM, Roberts SM. 2007. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1: 42-51. 

  7. Stefanidou M, Maravelias C, Dona A, Spiliopolou C. 2006. Zinc: a multipurpose trace element. Arch Toxicol 80: 1-9. 

  8. Rosado JL. 2003. Zinc and copper: proposed fortification levels and recommended zinc compounds. J Nutr 133: 2985S-2989S. 

  9. Friends of the Earth, Australia, Europe and U.S.A. 2008. Out of the laboratory and on to our plates, nanotechnology in food & agriculture. A report. p 1-63. 

  10. Shah P, Jogani V, Bagchi T, Misra A. 2006. Role of Caco-2 cell monolayers in prediction of intestinal drug absorption. Biotech Prog 22: 186-198. 

  11. Dobrovolskaia M. 2007. Immunological properties of engineered nanomaterials. Nature Nanotechnol 2: 469-478. 

  12. Khan R, Kaushik A, Solanki RR, Ansari AA, Pandey MM, Malhotra BD. 2008. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal Chim Acta 616: 207-213. 

  13. Opanasopit P, Aumklad P, Kowapradit J, Ngawhiranpat T, Apirakaramwong A, Rojanarata T. 2007. Effect of salt form and molecular weight of chitosan on in vitro permeability enhancement in intestinal epithelial cells (Caco-2). Pharmaceut Develop Technol 12: 447-455. 

  14. Rekha MR, Sharma CP. 2009. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release 135: 144-151. 

  15. Chen FZ, Zhang R, Yuan F, Qin X, Wang M, Huang Y. 2008. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm 49: 226-233. 

  16. Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. 2005. Preparation of nanoparticles composed of chitosan/poly- $\gamma$ -glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6: 1104-1112. 

  17. Markowska M, Oberle R, Juzwin S, Hsu CP, Gryszkiewicz M, Streeter AJ. 2001. Optimizing Caco-2 cell monolayers to increase throughput in drug intestinal absorption analysis. J Pharmacol Toxicol Methods 46: 51-55. 

  18. McCall KA, Fierke CA. 2000. Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals. Anal Biochem 284: 307-315. 

  19. Tantra R, Tompkins J, Quincey P. 2010. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension. Colloids Surf B: Biointerfaces 75: 275-281. 

  20. Kato H, Suzuki M, Fujita K, Horie M, Endoh S, Yoshida Y, Iwahashi H, Takahashi K, Nakamura A, Kinugasa S. 2009. Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol in Vitro 23: 927-934. 

  21. Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC. 2008. Stability of commercial metal oxide nanoparticles in water. Water Res 42: 2204-2212. 

  22. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101: 239-253. 

  23. Yang H, Liu C, Yang D, Zhang H, Xi Z. 2008. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29: 69-78. 

  24. Heng BC, Zhao X, Xiong S, Ng KW, Boey FYC, Loo JSC. 2010. Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 48: 1762-1766. 

  25. Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N. 2011. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol in Vitro 25: 657-663. 

  26. Nair S, Sasidharan A, Rani VVD, Menon D, Nair S, Manzoor K, Raina S. 2009. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20: S235-241. 

  27. Colon G, Ward BC, Webster TJ. 2006. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and $TiO_2$ . J Biomed Mater Res 78A: 595-604. 

  28. Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. 2000. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci 10: 195-204. 

  29. Jia L, Wong H, Cerna C, Weitman SD. 2002. Effect of nanonization on absorption of 301029: ex vivo and in vivo pharmacokinetic correlations determined by liquid chromatography/mass spectrometry. Pharm Res 19: 1091-1096. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로