$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

마우스를 이용한 생체내 실험에서의 플라보피리돌의 방사선민감화 효과
In Vitro Radiosensitization of Flavopiridol Did Not Translated into In Vivo Radiosensitization 원문보기

대한방사선종양학회지 = The Journal of the Korean soceity for therapeutic radiology and oncology, v.29 no.2, 2011년, pp.83 - 90  

김수지 (가톨릭대학교 의과대학 방사선종양학교실)

초록
AI-Helper 아이콘AI-Helper

목 적: 이전의 암세포주를 이용한 실험실내 연구에서 플라보피리돌은 암세포의 방사선에 의한 아포토시스를 증가시키는 것을 알 수 있었다. 이번 연구에서는 마우스를 이용한 생체내 실험에서 플라보피리돌의 방사선민감화 효과를 알아보고자 하였다. 대상 및 방법: 마우스 유방암 세포주인 EMT-6를 Balb/c 마우스에 피하주사하여 종양을 만든 후 플라보피리돌 단독 치료군, 방사선 단독 치료군, 방사선과 플라보피리돌 병합 치료군 및 대조군으로 나누어 종양의 성장 속도를 비교 하였다. 플라보피리톨은 2.5 mg/kg을 하루 2회 복강내에 주사하였고, 방사선은 1일 1회, 회당 4 Gy를 조사하여 총 28 Gy를 조사하였다. 각 치료군에서의 종양 성장 곡선을 구하여 비교하였다. 마우스로부터 채취한 종양으로 파라핀 절편을 만틀어 TUNEL 및 면역조직화학염색을 시행하였다. 결 과: 종양 성장을 비교하였을 때 대조군보다 방사선 단독 치료군과 방사선과 플라보피리돌 병합 치료군에서 종양 성장이 지연되는 것을 볼 수 있었다. 그러나 대조군과 플라보피리돌 단독 치료군 사이에서는 종양 성장에 차이가 없었고, 방사선 단독 치료군과 방사선과 플라보피리돌 병합 치료군 사이에서도 차이가 없었다. TUNEL 염색으로 아포토시스율을 비교했을 때 각 치료군 사이에 차이가 없었으며, 면역조직화학염색으로 Ku70 발현을 비교했을 때에도 각 치료군 사이에 차이가 없었다. 결 론: 플라보피리돌은 마우스 유방암 모델에서 방사선민감화 효과를 나타내지 않았다.

Abstract AI-Helper 아이콘AI-Helper

Purpose: Flavopiridol enhanced radiation-induced apoptosis of cancer cells in our previous in vitro study. The purpose of this study was to assess if flavopiridol could enhance the radioresponse of mouse mammary tumors in vivo. Materials and Methods: Balb/c mice bearing EMT-6 murine mammary carcinom...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • In this study, we examined whether flavopiridol potentiates radioresponse of in vivo mouse mammary tumor models and how it works.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Senderowicz AM. Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs 1999;17:313-320 

  2. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 2000;92:376-387 

  3. Worland PJ, Kaur G, Stetler-Stevenson M, Sebers S, Sartor O, Sausville EA. Alteration of the phosphorylation state of p34cdc2 kinase by the flavone L86-8275 in breast carcinoma cells: correlation with decreased H1 kinase activity. Biochem Pharmacol 1993;46:1831-1840 

  4. Sedlacek HH. Mechanisms of action of flavopiridol. Crit Rev Oncol Hematol 2001;38:139-170 

  5. Patel V, Senderowicz AM, Pinto D Jr, et al. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J Clin Invest 1998;102:1674-1681 

  6. Melillo G, Sausville EA, Cloud K, Lahusen T, Varesio L, Senderowicz AM. Flavopiridol, a protein kinase inhibitor, down-regulates hypoxic induction of vascular endothelial growth factor expression in human monocytes. Cancer Res 1999;59:5433-5437 

  7. Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res 1997;57:3375-3380 

  8. Motwani M, Delohery TM, Schwartz GK. Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin Cancer Res 1999;5:1876-1883 

  9. Raju U, Nakata E, Mason KA, Ang KK, Milas L. Flavopiridol, a cyclin-dependent kinase inhibitor, enhances radiosensitivity of ovarian carcinoma cells. Cancer Res 2003;63:3263-3267 

  10. Jung C, Motwani M, Kortmansky J, et al. The cyclin-dependent kinase inhibitor flavopiridol potentiates gamma-irradiation-induced apoptosis in colon and gastric cancer cells. Clin Cancer Res 2003;9:6052-6061 

  11. Newcomb EW, Lymberis SC, Lukyanov Y, et al. Radiation sensitivity of GL261 murine glioma model and enhanced radiation response by flavopiridol. Cell Cycle 2006;5:93-99 

  12. Kim S, Wu HG, Shin JH, Park HJ, Kim IA, Kim IH. Enhancement of radiation effects by flavopiridol in uterine cervix cancer cells. Cancer Res Treat 2005;37:191-195 

  13. Kim S, Kwon EK, Lee SH, Park HJ, Wu HG. Effect of flavopiridol on radiation-induced apoptosis of human laryngeal and lung cancer cells. J Korean Soc Ther Radiol Oncol 2007;25:227-232 

  14. Jeggo PA. Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res 1998;150(5 Suppl):S80-S91 

  15. Omori S, Takiguchi Y, Suda A, et al. Suppression of a DNA double-strand break repair gene, Ku70, increases radio-and chemosensitivity in a human lung carcinoma cell line. DNA Repair (Amst) 2002;1:299-310 

  16. Mason KA, Hunter NR, Raju U, et al. Flavopiridol increases therapeutic ratio of radiotherapy by preferentially enhancing tumor radioresponse. Int J Radiat Oncol Biol Phys 2004;59:1181-1189 

  17. MacLachlan TK, Sang N, Giordano A. Cyclins, cyclindependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot Gene Expr 1995;5:127-156 

  18. Patel V, Jakus J, Harris CM, Ensley JF, Robbins KC, Yeudall WA. Altered expression and activity of G1/S cyclins and cyclin-dependent kinases characterize squamous cell carcinomas of the head and neck. Int J Cancer 1997;73:551-555 

  19. Losiewicz MD, Carlson BA, Kaur G, Sausville EA, Worland PJ. Potent inhibition of CDC2 kinase activity by the flavonoid L86-8275. Biochem Biophys Res Commun 1994;201:589-595 

  20. Raju U, Ariga H, Koto M, et al. Improvement of esophageal adenocarcinoma cell and xenograft responses to radiation by targeting cyclin-dependent kinases. Radiother Oncol 2006;80:185-191 

  21. Willingham MC. Cytochemical methods for the detection of apoptosis. J Histochem Cytochem 1999;47:1101-1110 

  22. Gu Y, Jin S, Gao Y, Weaver DT, Alt FW. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc Natl Acad Sci USA 1997;94:8076-8081 

  23. Ouyang H, Nussenzweig A, Kurimasa A, et al. Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J Exp Med 1997;186:921-929 

  24. Camphausen K, Brady KJ, Burgan WE, et al. Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of gammaH2AX foci. Mol Cancer Ther 2004;3:409-416 

  25. Hara T, Omura-Minamisawa M, Kang Y, Cheng C, Inoue T. Flavopiridol potentiates the cytotoxic effects of radiation in radioresistant tumor cells in which p53 is mutated or Bcl-2 is overexpressed. Int J Radiat Oncol Biol Phys 2008;71:1485-1495 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로