$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Let $\mathcal{F}$ be a family of meromorphic functions in a domain D, and let $k$, $n({\geq}2)$ be two positive integers, and let $S=\{a_1,a_2,{\ldots},a_n\}$, where $a_1$, $a_2$, ${\ldots}$, $a_n$ are distinct finite complex numbers. If for each $f{\in}\mathcal{F}$, all zeros of $f$ have multiplicity at least $k+1$, $f$ and $G(f)$ share the set $S$ in $D$, where $G(f)=P(f^{(k)})+H(f)$ is a differential polynomial of $f$, then$\mathcal{F}$ is normal in $D$.

참고문헌 (9)

  1. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iber., 11(1995), 355-373. 
  2. M. L. Fang and L. Zalcman, Normal families and shared values of meromorphic functions III, Comput. Methods Funct. Theory, 2(2002), 385-395. 
  3. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964. 
  4. C. L. Lei, M. L. Fang and D. G. Yang, Normal of meromorphic functions and shared sets, Advance in Inequalities for Series., (2008), 155-162. 
  5. X. C. Pang and L. Zalcman, Normality and shared values, Ark. Mat., 38(2000), 171- 182. 
  6. X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc., 32 (2000), 325-331. 
  7. W. Schwick, Sharing values and normality, Arch Math., 59(1992), 50-54. 
  8. Y. F. Wang and M. L. Fang, Picard values and normal families of meromorphic functions with zeros, Acta Math., Sinica, New Series, 14(1)(1998), 17-26. 
  9. L. Zalcman, Normal families new perspectives, Bull. Amer. Math. Soc., 35(1998), 215-230. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일