$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

Cotton을 효모 세포($Pichia$ $stipitis$)의 고정화 담체로 사용하기 위하여 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl)로 derivatization 시켰다. 0.5 M DEAE HCl로 처리하였을 때, 효모 세포가 완전히 흡착하였으며, 이것은 DEAE-cotton g 당 101.8 mg의 효모 세포가 흡착하는 것이고, DEAE-cellulose에 효모 세포가 흡착하는 양의 약 6배 이상인 것으로 확인되었다. DEAE-cotton을 이용하여 효모 세포를 고정화하고, 이것을 ethanol 생산에 이용하였을 경우, glucose와 xylose가 포함된 배지에서 단당류에 대한 ethanol 수율로 0.33 정도로 ethanol을 생산 할 수 있다는 것을 실험적으로 확인하였다. 이를 이용하여 lignocellulosic bomass의 가수분해물로부터 bioethanol 생산에 이용될 수 있을 것으로 기대되어진다. DEAE-cotton에서 얻어진 결과는 DEAE-cellulose에서 같은 실험을 실시하여 서로 비교 분석하였다.

Abstract

In this study, DEAE-cotton [derivatized by 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl)] was prepared as a carrier for immobilized $Pichia$ $stipitis$ for ethanol production. When cotton was derivatized with 0.5 M DEAE HCl, the yeast cell suspension was adsorbed at 100% of the initial cell $OD_{600}$. The adsorbed yeast cells were estimated to be 101.8 mg-dry cells/g-DEAE-cotton. In particular, when a flask culture using the immobilized yeast cells was conducted in a glucose and xylose-containing medium, the yeast cells on the DEAE-cotton gradually produced ethanol, according to glucose and xylose consumption; the ethanol yield was approximately 0.33 g-ethanol/g-monosaccharide. Because DEAE-cotton was successfully used as a carrier for ethanol production from a glucose and xylose-containing medium, we expect that this bioethanol production process may be used for the bioethanol production process from the hydrolysate of lignocellulosic biomass. All the results of DEAE-cotton were compared with those of DEAE-cellulose as a carrier for immobilization.

참고문헌 (26)

  1. Amory, D. E. and Rouxhet, P. G. 1988. Surface properties of Saccharomyces cerevisiae and Saccharomyces carlbergensis: chemical composition, electrostatic charge and hydrophobicity. Biochim. Biophys. Acta 938, 16-70. 
  2. Bardi, E. P. and Koutinas, A. A. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. J. Agric. Food Chem. 42, 221-226. 
  3. Branyik, T., Silva, D. P., Vicente, A. A., Lehnert, R., Silva, J. B. A. e, Dostálek, P. and Teixeira, J. A. 2006. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J. Ind. Microbiol. Biotechnol. 33, 1010-1018. 
  4. El-Hilw, Z. H. 1999. Synthesis of cotton-bearing DEAE, carbamoyethyl, carboxyethyl, and poly(acrylamide) graft for utilization in dye removal. J. Polym. Sci. 73, 1007-1014. 
  5. Genisheva, Z., Mussatto, S. I., Oliveira, J. M. and Teixeira, J. A. 2011. Evaluating the potential of wine-making residues and corncobs as support materials for cell immobilization for ethanol production. Ind. Crop. Prod. 34, 979-985. 
  6. Hamaker, K., Rau, S.-L., Hendrickson, R., Liu, J., Ladisch, C. M. and Ladisch, M. R. 1999. Rolled stationary phases: Dimensionally structured textile adsorbents for rapid liquid chromatography of proteins. Ind. Eng. Chem. Res. 38, 865-872. 
  7. Hebeish, A. and El-Hilw, Z. H. 1998. Preparation of DEAE cotton-g-poly(methacrylic acid) for use as ion exchanger. J. Polym. Sci. 67, 739-745. 
  8. Inloes, D. S., Taylor, D. P., Cohen, S. N., Michaels, A. S. and Robertson, C. R. 1983. Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl. Environ. Microbiol. 46, 264-278. 
  9. Kumar, S., Singh, S. P., Mishra, I. M. and Adhikari, D. K. 2011. Continuous ethanol production by Kluyveromyces sp. IIPE453 immobilized on bagasse chips in packed bed reactor. J. Petrol. Technol. Altern. Fuels 2, 1-6. 
  10. Lee, C. W. and Chang, H. N. 1987. Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol. Bioeng. 29, 1105-1112. 
  11. Lee, S. E., Kim, H. J., Choi, W. Y., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2011. Optimal surface aeration rate for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. KSBB J. 26, 311-316. 
  12. Margaritis, A. and Merchant, F. J. A. 1984. Advances in ethanol production using immobilized cell systems. CRC Crit. Rev. Biotechnol. 1, 339-393. 
  13. Moo-Young, M., Lamptey, J. and Robinson, C. W. 1980. Immobilization of yeast cells on various supports for ethanol production. Biotechnol. Lett. 2, 541-548. 
  14. Nagashima, M., Azuma, M., Noguchi, S., Inuzuka, K. and Samejima, H. 1984. Continuous ethanol fermentation using immobilized yeast cells. Biotechnol. Bioeng. 26, 992-997. 
  15. Roberts, E. J. and Rowland, S. P. 1973. Removal of mercury from aqueous solutions by nitrogen-containing chemically modified cotton. Environ. Sci. Technol. 7, 552-555. 
  16. Robyt, J. F. and Mukerjea, R. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251, 187-202. 
  17. Silva, D. P., Branyik, T., Dragone, G., Vicente, A. A., Teixeira, J. A. and Silva, J. B. A. e. 2008. High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chem. Pap. 62, 34-41. 
  18. Singh, N. L., Srivastava, P. and Mishra, P. K. 2009. Studies on ethanol production using immobilized cells of Kluyveromyces thermotolerans in a packed bed reactor. J. Sci. Ind. Res. 68, 617-623. 
  19. Sungur, S. and Babaoğlu, S. 2005. Synthesis of a new cellulose ion exchanger and use for the separation of heavy metals in aqueous solutions. Sep. Sci. Technol. 40, 2067-2078. 
  20. Verbelen, P. J., De Schutter, D. P., Delvaux, F., Verstrepen, K. J. and Delvaux, F. R. 2006. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 28, 1515-1525. 
  21. Wada, M., Kato, J. and Chibata, I. 1980. Continuous production of ethanol using immobilized growing yeast cells. Appl. Microbiol. Biotechnol. 10, 275-287. 
  22. Williams, D. and Munnecke, D. M. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23, 1813-1825. 
  23. Yeon, J.-H., Lee, S.-E., Choi, W. Y., Choi, W. S., Kim, I. C., Lee, H.-Y. and Jung, K.-H. 2011. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21, 109-114. 
  24. Yeon, J.-H., Lee, S.-E., Choi, W. Y., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21, 323-331. 
  25. Yeon, J.-H., Seo, H.-B., Oh, S. H., Choi, W. S., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2010. Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25, 283-288. 
  26. Yu, J., Zhang, X. and Tan, T. 2007. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129, 415-420. 

이 논문을 인용한 문헌 (1)

  1. 2013. "" Journal of microbiology and biotechnology, 23(10): 1434~1444 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일