$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Statistical analysts engaged in typical clinical trials often have to confront a tight schedule to finish massive statistical analyses specified in a Standard Operation Procedure (SOP). Thus, statisticians or not, most analysts would want to reuse or slightly modify existing programs. Since even a slight misapplication of statistical methods or techniques can easily drive a whole conclusion to a wrong direction, analysts should arm themselves with well organized statistical concepts in advance. This paper will review basic statistical concepts related to typical clinical trials. The number of variables and their measurement scales determine an appropriate method. Since most of the explanatory variables in clinical trials are designed beforehand, the main statistics we review for clinical trials include univariate data analysis, design of experiments, and categorical data analysis. Especially, if the response variable is binary or observations collected from a subject are correlated, the analysts should pay special attention to selecting an appropriate method. McNemar's test and multiple McNemar's test are respectively recommended for comparisons of proportions between correlated two samples or proportions among correlated multi-samples.

저자의 다른 논문

참고문헌 (24)

  1. Chen HL, Yang A. Common Pitfalls in SAS Statistical Analysis Macros in a Mass Production Environment. NESUG 2007; Statsitics and Data Analysis, http://www. nesug.org/proceedings/nesug07/sa/sa05.pdf [Online] (last visited on 8 May 2012). 
  2. Montgomery DC. Design and Analysis of Experiments. 8th ed, John Wiley & Sons, 2012. 
  3. Meyers LS, Gamst G, Guarino AJ. Applied multivariate research: Design and interpretation. Sage publications, 2006. 
  4. McClave JT, Sincich T. Statistics. 11th ed, Pearson Prentice Hall, 2009. 
  5. Jamieson S. Likert scales: How to (ab)use them. Med Educ, 2004;38:1212-1218. 
  6. University of Northern Iowa (UNI). SPSS techniques Series: Statistics on Likert Scale Surveys. http://www.uni.edu/its/support/article/ 604 [Online] (last visited on 31 May 2012). 
  7. Allen IE, Seaman CA. Likert Scales and Data Analyses. Qual Prog, 2007;40:64-65. 
  8. Mood AM, Graybill FA, Boes DC. Introduction to the theory of Statistics. 3rd ed, McGraw- Hill Higher Education, 1974. 
  9. Rosner B. Fundamentals of Biostatistics. 7th ed, Cengage Learning, 2000;666-673. 
  10. Simmons B, Bland MJ, Wojciechowski B. AP Statistics. Kaplan, Inc., 2010. 
  11. Sternstein M. AP Statistics. 5th ed, Barron's Educational Series Inc., 2010. 
  12. Patterson S, Jones B. Bioequivalence and Statistics in Clinical Pharmacology. Chapman and Hall/CRC, 2005;39-77. 
  13. SAS Institute Inc. SAS/STAT User's Guide. 1990. 
  14. Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Springer, 2004. 
  15. 박성현. 현대실험계획법. 민영사, 2006. 
  16. Feng WW, Ding D. SAS@ application in 2${\times}$2 crossover clinical trial. http://www.lexjansen. com/pharmasug/2004/statisticspharmacokinetics/ sp02.pdf [Online] (last visited on 8 May 2012). 
  17. Simpson PM, Hamer RM, Lensing S. Crossover studies off your list. http:// www2.sas.com/proceedings/sugi24/Posters/ p221-24.pdf [Online] (last visited on 8 May 2012). 
  18. Chinchilli VM, Esinhart JD. Design and analysis of intra-subject variability in cross-over experiments. Stat Med, 1996;15(15):1619-1634. 
  19. Brunelle,R. Review various methods to perform the analysis of a 2 treatment, 2 period crossover study. http://www.math. iupui.edu/-indyasa/crosover.pdf [Online] (last visited on 29 May 2012). 
  20. Dallal GE. The computer-aided analysis of crossover studies. http://www.jerrydallal.com /LHSP/crossovr.htm [Online] (last visited on 29 May 2012). 
  21. Nagelkerke NJD, Hart AAM, Oosting J. The two period binary response cross-over trial. Biomed J, 1986;28(7):863-869. 
  22. Consonni, G, Rocca, LL. Tests Based on Intrinsic Priors for the Equality of Two Correlated Proportions. JASA, 2008;103(483):1260-1269. 
  23. Westfall PH, Troendle JF, Pennello G. Multiple McNemar test. Biometrics, 2010; 66(4):1185-1191. 
  24. Choi K. Common misapplications of independent sample analyses in SAS to correlated adverse events in crossover designs. Submitted to Quantitative Bio-science, 2012. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일