$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

세라믹 멤브레인의 나노구조 제어 및 응용
Control of Nano-Structure of Ceramic Membrane and Its Application 원문보기

멤브레인 = Membrane Journal, v.22 no.2, 2012년, pp.77 - 94  

이혜련 (한국화학연구원 자원분리회수연구그룹) ,  서봉국 (한국화학연구원 자원분리회수연구그룹) ,  최용진 (동의대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

내열성, 용매 저항성의 특징을 갖는 다공성 세라믹 소재를 이용한 무기 멤브레인이 기체분리(수소 분리, 이산화탄소 분리 등), 액체 분리(수처리, 폐수처리, 유기용매 분리 등) 등 여러 가지 분야로 그 응용이 확대되고 있다. 본 논문에서는 다공성 세라믹 멤브레인의 소재, 제조 방법에 따른 멤브레인의 구조 제어 및 성능 평가에 관한 연구를 소개하고, 멤브레인의 세공 크기에 따른 구조, 멤브레인의 특성을 이용한 여러 가지 기체 분리 및 액체 분리에 관한 연구 동향을 정리하였다.

Abstract AI-Helper 아이콘AI-Helper

Amorphous ceramic membranes have been developed for gas phase separation and liquid phase separation (water treatment, wastewater treatment and separation of organic solvent or compounds) because of their thermal stability and solvent resistance. In this paper, ceramic membranes were categorized by ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
세라믹 멤브레인의 실용화를 위해서 중요한 것은 무엇인가? 지금까지는 각종 고분자 소재의 멤브레인이 주로 개발되고 상용화되어 왔지만, 최근에는 기체 및 수처리 등의 분야에서 세라믹 소재 멤브레인 적용에 대한 관심이 증가하고 있다. 세라믹 멤브레인의 실용화를 위해서는 나노 기공 구조를 정밀하게 제어하는 것이 중요하며, 나노 또는 그 이하(sub-nanometer)의 세공 크기를 가지는 세라믹 박막은 원하는 분자를 크기에 따라 선택적으로 투과하는 기체 분리용 멤브레인으로 이용할 수 있다. 이러한 목적으로 개발된 마이크로 기공(microporous) 실리카, 알루미나, 티타니아, 지르코니아, 제올라이트와 같은 세라믹 멤브레인의 기공 제어 관련 연구가 오랫동안 시도되어 왔다.
선택 투과성 멤브레인은 어떻게 분류할 수 있는가? 혼합물 분리정제를 위한 선택 투과성 멤브레인은 소재에 따라서 고분자 멤브레인, 무기 멤브레인, 유무기 복합 멤브레인, 구조에 따라서는 대칭성과 비대칭성 멤브레인 등으로 분류할 수 있다. 대칭성 멤브레인은 또다공성과 비다공성으로 나뉠 수 있다[1].
멤브레인이 우수한 분리 성능을 가지기 위해서 필요한 조건은? 이러한 멤브레인이 우수한 분리 성능을 가지기 위해서는 다음과 같은 조건이 만족되어야 한다. 즉, i) 박막화에 의한 투과 속도 증대, ii) 결함(defect or pinhole)이 없는 양질의 분리 층, iii) 균일한 세공 분포, iv) 투과 저항이 거의 없는 지지체, v) 내구성 및 화학적 안정성이 요구된다. 이러한 조건을 고려하면서 동시에 분리 층의 기계적 물성을 보완하기 위해, 다공성 지지체(porous support)에 분리용 멤브레인을 코팅하여 복합화 하는 것이 일반적이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (75)

  1. S. P. Nunes and K.-V. Peinemann, "membranes technology in the chemical industry", Elsevier, Wiley-VCH, Germany (2006). 

  2. J. Xiao and J. Wei, "Diffusion mechanism of hydrocarbons in zeolites-I. Theory", Chem. Eng. Sci., 47, 1123 (1992). 

  3. A. B. Shelekhin, A. G. Dixon, and Y. H. Ma, "Theory of gas diffusion and permeation in inorganic molecular-sieve membranes", AIChE. J., 41, 58 (1995). 

  4. M. Mulder, "Basic Principles of Membrane technology", Kluwer Academic Publishers, Dordrecht (1996). 

  5. A. J. Burggraaf and L. Cot, "Fundermentals of inorganic membrane science and technology", Elesvier, Amsterdam (1996). 

  6. T. Tsuru, "Nano/subnano-tuning of porous ceramic membranes for molecular separation", J. Sol-Gel Sci. Technol., 46, 349 (2008). 

  7. C. J. Brinker and G. W. Scherer, "Sol-Gel Science", Academic Press Inc. San Diego (1990). 

  8. B. N. Nair, K. Keizer, W. J. Elferink, M. J. Gilde, H. Verweij, and A. J. Burggraaf, "Synthesis, characterisation and gas permeation studies on microporous silica and alumina-silica membranes for separation of propane and propylene", J. Membr. Sci., 116, 161 (1996). 

  9. R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, "Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes", J. Membr. Sci., 104, 81 (1995). 

  10. R. S. A. de Lange, K. Keizer, and A. J. Burggraaf, "Aging and stability of microporous sol-gel-modified ceramic membranes", Ind. Eng. Chem. Res., 34, 3838 (1995). 

  11. R. M. de Vos, W. F. Maier, and H. Verweij, "Hydrophobic silica membranes for gas separation", J. Membr. Sci., 158, 277 (1999). 

  12. M. C. Duke, J. C. D. da Costa, G. Q. Lu, M. Petch, and P. Gray, "Carbonised template molecular sieving silica membranes in fuel processing systems : permeation, hydrostability and regeneration", J. Membr. Sci., 241, 325 (2004). 

  13. J. Campaniello, C. W. R. Engelen, W. G. Haije, P. P. A. C. Pex, and J. F. Vente, "Long-term pervaporation performance of microporous methylated silica membranes", Chem. Commun., 40, 834 (2004). 

  14. H. L. Castricum, A. Sah, R. Kreiter, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "Hydrothermally stable molecular separation membranes from organically linked silica", J. Mater. Chem., 18, 2150 (2008). 

  15. H. L. Castricum, R. Kreiter, H. M. van Veen, D. H. A. Blank, J. F. Vente, and J. E. ten Elshof, "High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability", J. Membr. Sci., 324, 111 (2008). 

  16. R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, and J. F. Vente, "Stable hybrid silica nanosieve membranes for the dehydration of lower alcohols", Chem. Sus. Chem., 2, 158 (2009). 

  17. N. K. Raman and C. J. Brinker, "Organic "template" approach to molecular sieving silica membranes", J. Membr. Sci., 105, 273 (1995). 

  18. G. Gao, Y. Lu, L. Delattre, C. J. Brinker, and G. P. Lopez, "Amorphous silica molecular sieving membranes by sol-gel processing", Adv. Mater., 8, 588 (1996). 

  19. K. Kusakabe, S. Sakamoto, T. Saie, and S. Morooka, "Pore structure of silica membranes formed by a sol-gel technique using tetraethoxysilane and alkyltriethoxysilanes", Sep. Purif. Technol., 16, 139 (1999). 

  20. M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, "Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability", J. Am. Chem. Soc., 131, 414 (2009) 

  21. M. Kanezashi, K. Yada, T. Yoshioka, and T. Tsuru, Organic-inorganic hybrid silica membranes with controlled silica network size: preparation and gas permeation characteristics, J. Membr. Sci., 348, 310 (2010). 

  22. M. Kanezashi, M. Kawano, T. Yoshioka, and T. Tsuru, "Organic-inorganic hybrid silica membranes with controlled silica network size for propylene/propane separation", Ind. Eng. Chem. Res., 51, 944 (2011). 

  23. H. R. Lee, M. Kanezashi, Y. Shimomura, T. Yoshioka, and T. Tsuru, "Evaluation and fabrication of pore-size-tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation", AIChE J., 57, 2755 (2011). 

  24. H. R. Lee, T. Shibata, M. Kanezashi, T. Mizumo, J. Ohshita, and T. Tsuru, "Pore-size-controlled silica membranes with disiloxane alkoxides for gas separation", J. Membr. Sci., 383, 152 (2011). 

  25. T. T. Sorita, S. Shiga, K. Ikuta, Y. Egashira, and H. Komiyama, "The formation mechanism and step coverage quality of tetraethylorthosilicate-silicon dioxide films studied by the micro/macrocavity method", J. Electrochem. Soc., 140, 2952 (1993). 

  26. G. R. Gavalas, C. E. Megiris, and S. W. Nam, "Deposition of $H_2$ -permselective silica films", Chem. Eng. Sci., 44, 1829 (1989). 

  27. S. Jiang, Y. Yan, and G. R. Gavalas, "Temporaty carbon barriers in the preparation of $H_2$ -selective silica membranes", J. Membr. Sci., 103, 211 (1995). 

  28. S. Kim and G. R. Gavalas, "Preparation of $H_2$ permselective silica membranes by alternating reactant vapor deposition", Ind. Eng. Chem. Res., 34, 168 (1995). 

  29. S. Morooka, S. Yan, K. Kusakabe, and Y. Akiyama, "Formation of hydrogen-permselective $SiO_2$ membrane in macropores of $\alpha$ -alumina support tube by thermal decomposition of TEOS", J. Membr. Sci., 101, 89 (1995). 

  30. B.-K. Sea, K. Kusakabe, and S. Morooka, "Hydrogen recovery from a $H_2-H_2O-HBr$ mixture utilizing silica-based membranes at elevated temperatures. 2. Calculation of exergy losses in $H_2$ separation using inorganic membranes", Ind. Eng. Chem. Res., 37, 2509 (1998). 

  31. B.-K. Sea, K. Kusakabe, and S. Morooka, "Pore size control and gas permation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous support wall", J. Membr. Sci., 130, 41 (1997). 

  32. S.-E. Nam and K.-H. Lee, "A study on the palladium/nickel composite membrane by vacuum electrodeposition", J. Membr. Sci., 170, 91 (2000). 

  33. S. Jung, K. Kusakabe, S. Morooka, and S. Kim, "Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane" J. Membr. Sci., 170, 53 (2000). 

  34. Y. Gu and S. T. Oyama, "Ultrathin, hydrogenselective silica membranes depositied on alumina-graded structures prepared from size-controlled boehmite sols", J. Membr. Sci., 306, 216 (2007). 

  35. Y. Gu, P. Hacarlioglu, and S. T. Oyama, "Hydrothermally stable silica-alumina composite membranes for hydrogen separation", J. Membr. Sci., 310, 28 (2008). 

  36. P. Hacarlioglu, D. Lee, G. V. Gibbs, and S. T. Oyama, "Activation energies for permeation of He and $H_2$ through silica membranes: An ab initio calculation study", J. Membr. Sci., 313, 277 (2008). 

  37. Y. Gu and S. T. Oyama, "Permeation properites and hydrothermal stability of silica-titania membranes supported on porous alumina substrates", J. Membr. Sci., 345, 267 (2009). 

  38. Z. A. E. P. Vroon, K. Keizer, M. J. Gilde, H. Verweij, and A. J. Burggraaf, "Transport properties of alkanes through ceramic thin zeolite MFI membrane", J. Membr. Sci., 113, 293 (1996). 

  39. C. Bai, M.-D. Jia, J. L. Falconer, and R. D. Noble, "Preparation and separation properties of silicalite composite membranes", J. Membr. Sci., 105, 79 (1995). 

  40. J. E. Lewis, G. R. Gavalas, and M. E. Davis, "Permeation studies on oriented single-crystal ferrierite membranes", AIChE J., 43, 83 (1997). 

  41. M. C. Lovallo and M. Tsapatsis, "Preferentially oriented submicron silicalite membranes", AIChE J., 42, 3020 (1996). 

  42. F. Kapteijn, W. J. W. Bakker, G. Zheng, J. Poppe, and J. A. Moulijn, "Permeation and separation of light hydrocarbons through a silicalite-1 membrane. Application of the generalized Maxwell-stefan equations", Chem. Eng. J., 57, 145 (1995). 

  43. W. J. W. Bakker, F. Kapteijn, J. Poppe, and J. A. Moulijn, "Permeation characteristics of a metal-supported silicalite-1 zeolite membrane", J. Membr. Sci., 117, 57 (1996). 

  44. Japan Fine Ceramics Center: Report on Carbon Dioxide Recovery and Utilizing Technology (1997). 

  45. C.-Y. Tsai, S.-Y. Tam, Y. Lu, and C. J. Brinker, "Dual-layer asymmetric microporous silica membranes", J. Membr. Sci., 169, 255 (2000). 

  46. C. J. Brinker, T. L. Ward, R. Sehgal, N. K. Raman, S. L. Hietala, D. M. Smith, D.-W. Hua, and T. J. Headly, "Ultramicroporous" silica-based supported inorganic membranes", J. Membr. Sci., 77, 165 (1993). 

  47. R. J. R. Uhlhorn, K. Keizer, and A. J. Burggraaf, "Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation", J. Membr. Sci., 66, 259 (1992). 

  48. Y. K. Cho, K. Han, and K. H. Lee, "Separation of $CO_2$ by modified ${\gamma}-Al_2O_3$ membranes at high temperature", J. Membr. Sci., 104, 219 (1995). 

  49. S. H. Hyun, S. Y. Jo, and B. S. Kang, "Surface modification of $\gamma$ -alumina by silane coupling for $CO_2$ separation", J. Membr. Sci., 120, 197 (1996). 

  50. T. Okui, Y. Saito, T. Okubo, and M. Sadakata, "Gas permeation of porous organic/inorganic hybrid membranes", J. Sol-Gel Sci. Tech., 5, 127 (1995). 

  51. J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Morooka, "Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp'ODA polyimide", Ind. Eng. Chem. Res., 36, 2134 (1997). 

  52. T. Suzuki and Y. Yamada, "Characterization of 6FDA-based hyperbranched and linear polyimidesilica hybrid membranes by gas permeation and 129Xe NMR measurements", J. Polym., Sci., B: Polymer Physics, 44, 291 (2006). 

  53. K. M. Steel and W. J. Koros, "An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials", Carbon, 43, 1843 (2005). 

  54. K. Kusakabe, T. Kuroda, A. Murata, and S. Morooka, "Formation of a Y-type zeolite membrane on a porous $\alpha$ -alumina tube for gas separation", Ind. Eng. Chem. Res., 36, 649 (1997). 

  55. S. Li, G. Alvarado, R. D. Noble, and J. L. Falconer, "Improved SAPO-34 membranes for $CO_2/CH_4$ separations", Adv. Mater., 18, 2601 (2006). 

  56. Y. Cui, H. Kita, and K. Okamoto, "Preparation and gas separation performance of zeolite T membrane", J. Mater. Chem., 14, 924 (2004). 

  57. S. Himeno, T. Tomita, K. Suzuki, and S. Yoshida, "Characterization and selectivity for membrane and carbon dioxide adsorption on the all-silica DD3R zeolite", Microporous Mesoporous Materials, 98, 62 (2007). 

  58. S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, and S. Yoshida, "Synthesis and permeation properties of a DDR-type zeolite membrane for separation of $CO_2/CH_4$ gaseous mixtures", Ind. Eng. Chem. Res., 46, 6989 (2007). 

  59. K. Aoki, K. Kusakabe, and S. Morooka, "Separation of gases with an A-type zeolite membrane", Ind. Eng. Chem. Res., 39, 2245 (2000). 

  60. X. Gu, J. Dong, and T. M. Nenoff, "Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist $CO_2/CH_4$ mixtures", Ind. Eng. Chem. Res., 44, 937 (2005). 

  61. J. C. Poshusta, R. D. Noble, and J. L. Falconer, "Characterization of SAPO-34 membranes by water adsorption", J. Membr. Sci., 186, 25 (2001). 

  62. M. P. Bernal, J. Coronas, M. Menendez, and J. Santamaria, "Separation of $CO_2/N_2$ mixtures using MFI-type zeolite membranes", AIChE J., 50, 127 (2004). 

  63. A. K. Prabhu, A. Liu, L. G. Lovell, and S. T. Oyama, "Modeling of the membrane reforming reaction in hydrogen selective membrane reactors", J. Membr. Sci., 177, 83 (2000). 

  64. M. L. Bosko, J. F. Munera, E. A. Lombardo, and L. M. Cornaglia, "Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support", J. Membr. Sci., 364, 17 (2010). 

  65. T. Tsuru, T. Morita, H. Shintani, T. Yoshioka, and M. Asaeda, "Membrane reactor performance of steam reforming of methane using hydrogen-permselective catalytic $SiO_2$ membranes", J. Membr. Sci., 316, 53 (2008). 

  66. G. Li, M. Kanezashi, and T. Tsuru, "Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for COx-free hydrogen production", Catalysis Comm., 15, 60 (2011). 

  67. J. Yang, T. Yoshioka, T. Tsuru, and M. Asaeda, "Pervaporation characteristics of aqueous-organic solutions with microporous $SiO_2-ZrO_2$ membranes: Experimental study on separation mechanism", J. Membr. Sci., 284, 205 (2006). 

  68. Y. Ma, J. Wang, and T. Tsuru, "Pervaporation of water/ethanol mixtures through microporous silica membranes", Sep. Purif. Technol., 66, 479 (2009). 

  69. J. Wang and T. Tsuru, "Cobalt-doped silica membranes for pervaporation dehydration of ethanol/water solutions", J. Membr. Sci., 369, 13 (2011). 

  70. T. Tsuru, M. Narita, R. Shinagawa, and T. Yoshioka, "Nanoporous titania membranes for permeation and filteration of organic solutions", Desalination, 233, 1 (2008). 

  71. T. Tsuru, T. Nakasuji, M. Oka, M. Kanezashi, and T. Yoshioka, "Preparation of hydrophobic nanoporous methylated $SiO_2$ membranes and application to nanofiltration of hexane solutions", J. Membr. Sci., 384, 149 (2011). 

  72. Fuji-Keizai, "高機能 分離膜 關聯 技術.市場 全貌と 將來豫測" (2009). 

  73. J. Y. Park and G. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of organic materials in N2-backflushing", Membrane Journal, 19(3), 203 (2009). 

  74. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of GAC packing fraction", Membrane Journal, 18(3), 191 (2008). 

  75. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption : Effect of water-back-flushing time and period", Membrane Journal, 19(1), 7 (2009). 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로