$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In this study, the lipolytic activity of Thermus thermophilus HB8 was examined. The addition of various oils increased the production of extracellular lipolytic activity, while a combination of olive oil and glucose increased both extracellular and intracellular lipolytic activity. The oxygen transfer rate had a significant influence on both biomass and production of extra- or intra-cellular lipolytic activity. The formation of white halos due to the hydrolysis of oleic acid ester (Tween 80) in agar plates containing Nile Blue and the formation of $Ca^{2+}$-oleate indicated the secretion of lipase. When the cell-free supernatant of cells grown in basal reach medium or the corresponding intracellular extract were electrophoresed under denatured and renatured conditions, using ${\alpha}$-naphthyl acetate and Fast Blue RR, major bands at 56 kDa or 62 and 32 kDa were observed, respectively. The 56 kDa extracellular enzyme was partial purified and characterized. Its peak of activity occurred at $80^{\circ}C$ and pH 7.0, while the $T_{1/2}$ was 1 h at $100^{\circ}C$. The $K_m$ of the partial purified enzyme was 1 mM and the $V_{max}$ was 0.044 U/mL/min when using p-nitrophenyl laurate as substrate. The presence of $Ca^{2+}$ and $Hg^{2+}$ stimulated lipase activity, whereas $Zn^{2+}$, $Co^{2+}$, or EDTA inhibited lipase activity. The highest activity was observed in the presence of coconut oil and p-nitrophenyl laurate (pNPL). Purified lipase was the most stable in the presence of various organic solvents, such as pentanol, chloroform and n-dodecane. Because of the superior thermostability and stability in the presence of organic solvents of T. thermophilus extracellular lipase, this lipase holds great promise for use in industrial applications.

참고문헌 (66)

  1. Saxena, R. K., A. Sheoran, B. Giri, and W. S. Davidson (2003) Purification strategies for microbial lipases. J. Microbiol. Methods 52: 1-18. 
  2. Fucinos, P., C. M. Abadin, A. Sanroman, M. A. Longo, L. Pastrana, and M. L. Rua (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: Partial purification and preliminary biochemical characterisation. J. Biotechnol. 117: 233-241. 
  3. Gupta, R., N. Gupta, and P. Rathi (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781. 
  4. Kanwar, S. S., I. A. Ghazi, S. S. Chimni, G. K. Joshi, G. V. Rao, R. K. Kaushal, R. Gupta, and V. Punj (2006) Purification and properties of a novel extracellular therrmotolerant metallolipase of Bacillus coagulans MTCC-6375 isolate. Protein Expr. Purif. 46: 421-428. 
  5. Hough, D. W. and M. J. Danson (1999) Extremozymes. Biocatal. Biotransfor. 3: 39-46. 
  6. Schiraldi, C. and M. De Rosa (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol. 20: 515-521. 
  7. Pantazaki, A. A., A. A. Pritsa, and D. A. Kyriakidis (2002) Biotechnologically relevant enzymes and proteins from Thermus thermophilus. Appl. Microbiol. Biotechnol. 58: 1-12. 
  8. Sharma, R., Y. Chisti, and U. Banerjee (2001) Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662. 
  9. Niehaus, F., C. Bertoldo, M. Kahler, and G. Antranikian (1999) Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711-729. 
  10. Becker, P., I. Abu-Reesh, S. Markossian, G. Antranikian, and H. Markl (1997) Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl. Microbiol. Biotechnol. 48: 184-190. 
  11. Kademi, A., N. A t-Abdelkader, L. Fakhreddine, and J. C. Baratti (1999) A thermostable esterase activity from newly isolated moderate thermophilic bacterial strains. Enz. Microb. Technol. 24: 332-338. 
  12. Markossian, S., P. Becker, H. Markl, and G. Antranikian (2000) Isolation and characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an ocelandic hot spring. Extremophiles 4: 365-371. 
  13. Kim, M. H., H. K. Kim, J. K. Lee, S. Y. Park, and T. K. Oh (2000) Thermostable lipase of Bacillus stearothermophilus: High level production, purification, and calcium-dependant thermostability. Biosc. Biotechnol. Biochem. 64: 280-286. 
  14. Schmidt-Dannert, C., M. L. Rua, H. Atomi, and R. D. Schmid (1996) Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purifications and some properties. Biochim. Biophys. Acta 1301: 105-114. 
  15. Sugihara, A., T. Tani, and Y. Tominaga (1991) Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem. 109: 211-216. 
  16. Fakhreddine, L., A. Kademi, N. Ait-Abdelkader, and J. C. Baratti (1998) Microbial growth and lipolytic activities of moderate thermophilic bacterial strain. Biotechnol. Lett. 20: 879-883. 
  17. Wang, Y., K. C. Srivastava, G.-J. Shen, and H. Y. Wang (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacilus, strain A30-1. J. Ferment. Bioeng. 79: 433-438 
  18. Sugihara, A., M. Ueshima, Y. Shimada, S. Tsunasawa, and Y. Tominaga (1992) Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J. Biochem. 112: 598-603. 
  19. Lee, S. Y. and J. S. Rhee (1993) Production and partial purification of a lipase from Pseudomonas putida 3SK. Enz. Microbiol. Technol. 15: 617-623 
  20. Ahn, J. H., J. G. Pan, and J. S. Rhee (1999) Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. J. Bacteriol. 181: 1847-1852. 
  21. Lopes Mde, F., A. L. Leitao, M. Regalla, J. J. Marques, M. J. Carrondo, and M. T. Crespo (2002) Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum. Int. J. Food Microbiol. 76: 107-115. 
  22. Oshima, T. and I. Kazutomo (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a non-sporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol. 24: 102-112. 
  23. Fucinos, P., A. Dominguez, M. A. Sanroman, M. A. Longo, M. L. Rua, and L. Pastrana (2005) Production of thermostable lipolytic activity by Thermus species. Biotechnol. Progr. 21: 1198-1205. 
  24. Dominguez, A., P. Fucinos, M. L. Rua, L. Pastrana, M. A. Longo, and M. A. Sanroman (2007) Stimulation of novel thermostable extracellular lipolytic enzymes in cultures of Thermus sp. Enz. Microbiol. Technol. 40: 187-194. 
  25. Dominguez, A., L. Pastrana, M. A. Longo, M. L. Rua, and M. A. Sanroman (2005) Lipolytic enzyme production by Thermus thermophilus HB27 in a stirred tank bioreactor. Biochem. Eng. J. 26: 95-99. 
  26. Deive, F. J., E. Carvalho, L. Pastrana, M. L. Rua, M. A. Longo, and M. A. Sanroman (2009) Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresource Technol. 100: 3630-3637. 
  27. Lopez-Lopez, O., P. Fucinos, L. Pastrana, M. L. Rua, M. E. Cerdan, and M. I. Gonzalez-Siso (2010) Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae. J. Biotechnol. 145: 226-232. 
  28. Sigurgisladottir, S., M. Konraosdottir, A. Jonsson, J. K. Kristjansson, and E. Matthiasson (1993) Lipase activity of thermophilic bacteria from icelandinc hot springs. Biotechnol. Lett. 15: 361-366. 
  29. Buchs, J. (2001) Introduction to advantages and problems of shaken cultures. Biochem. Eng. J. 7: 91-98. 
  30. Maier, U. and J. Buchs (2001) Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem. Eng. J. 7: 99-106. 
  31. Sierra, G. (1957) A simple method for the detection of lypolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Anton. van Leeuw. 23: 15-22. 
  32. Smeltzer, M. S., M. E. Hart, and J. J. Iandolo (1992) Quantitative spectrophotometric assay for staphylococcal lipase. Appl. Environ. Microbiol. 58: 2815-2819. 
  33. Kwon, D. Y. and J. S. Rhee (1986) A simple and rapid colorimetric method for determination of free fatty acid for lipase assay. J. Am. Oil Chem. Soc. 63: 69-92. 
  34. Bradford, M. M. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Chem. 72: 248-254. 
  35. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. 
  36. Ogino, H., S. Nakagawa, K. Shinya, T. Muto, N. Fujimura, M. Yasuda, and H. Ishikawa (2000) Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89: 451-457. 
  37. Watanabe, S., T. Muramatsu, H. Ao, Y. Hirayama, K. Takahashi, M. tanokura, and Y. Kuchino (1999) Molecular cloning of the Lon protease gene from Thermus thermophilus HB8 and characterization of its gene product. Eur. J. Biochem. 266: 811-819. 
  38. Jaeger, K. E., S. Ransac, B. W. Dijkstra, C. Colson, M. Vanheuvel, and O. Misset (1994) Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63. 
  39. Fojan, P., P. H. Jonson, M. T. N. Petersen, and S. B. Petersen (2000) What distinguishes an esterase from a lipase: A novel structural approach. Biochimie. 82: 1033-1041. 
  40. Kennedy, B. W. (1969) Prevalence and detection of lipolytic microorganisms in soybean seeds. Cereal Chem. 46: 70-73. 
  41. Belo, I., R. Pinheiro, and M. Mota (2000) Response of the thermophile Thermus sp. RQ-1 to hyperbaric air in batch and fedbatch cultivation. Appl. Microbiol. Biotechnol. 53: 517-524. 
  42. Demirtas, M. U., A. Kolhatkar, and J. J. Kilbane (2003) Effect of agitation and aeration on growth rate of Thermus thermophilus in batch mode. J. Biosc. Bioeng. 95: 113-117. 
  43. Janssen, P. H., C. R. Monk, and H. W. Morgan (1994) A thermophilic, lipolytic Bacillus sp., and continuous assay of its pnitrophenyl-palmitate esterase activity. FEMS Microbiol. Lett. 120: 195-200. 
  44. Hsu, K. H., G. C. Lee, and J. F. Shaw (2008) Promoter analysis and differential expression of the Candida rugosa lipase gene family in response to culture conditions. J. Agr. Food Chem. 56: 1992-1998. 
  45. Hooker, A. D., J. Hardy, and K. A. Stacey (1997) Is induction of the exocellular lipase of Xanthomonas maltophila NK7 by fats and detergents simply the result of continual detachment from the cell surface? World J. Microbiol. Biotechnol. 13: 677-681. 
  46. Arpigny, J. L. and K. E. Jaeger (1999) Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343: 177-183. 
  47. Kordel, M., B. Hofmann, D. Schomburg, and R. D. Schmid (1991) Extracellular lipase of Pseudomonas sp. strain ATCC 21808: Purification, characterization, crystallization, and preliminary X-ray diffraction data. J. Bacteriol. 173: 4836-4841. 
  48. Sifour, M., H. M. Saeed, T. I. Zaghhloul, M. M. Berekaa, and Y. R. Abdel-Fattal (2010) Purification and properties of a lipase from thermophilic Geobacillus stearothermophilus strain-5. Int. J. Biol. Chem. 4: 202-212. 
  49. Kumar, S., K. Kikon, A. Upadhyay, S. S. Kanwar, and R. Gupta (2005) Production, purification and characterization of lipase from thermophilic and alkalophilic Bacillus coagulans BTS-3. Protein Expr. Purif. 41: 38-44. 
  50. Nawani, N. and J. Kaur (2000) Purification, characterization and thermostability of a lipase from thermophilic Bacillus sp. J. Cell Chem. 206: 91-96. 
  51. Rashid, N., Y. Shimada, S. Ezaki, H. Atomi, and T. Immaake (2001) Low temperature lipase from psychrophilic Pseudomonas sp. strain KB700A. Appl. Environ. Microb. 67: 4064-4069. 
  52. Rahman, R. N., S. N. Baharum, M. Basri, and A. B. Salleh (2005) High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem. 341: 267-274. 
  53. Iizumi, T., K. Nakamura, and T. Fukase (1990) Purification and characterization of a thermostable lipase from newly isolated Pseudomonas sp. KWI-56 Agric. Biol. Chem. 54: 1253-1258. 
  54. Gilbert, E. J., A. Cornish, and C. W. Jones (1991) Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2. J. Gen. Microbiol. 137: 2223-2229. 
  55. Jinwal, U. K., U. Roy, A. R. Chowdhury, A. P. Bhaduri, and P. K. Roy (2003) Purification and characterization of an alkaline lipase from a newly isolated Pseudomonas mendocina PK-12CS and chemoselective hydrolysis of fatty acid ester. Bioorg. Med. Chem. 11: 1041-1046. 
  56. Rua, M. L., C. Schmidt-Dannert, S. Wahl, A. Sprauer, and R. D. Schmid (1997) Thermoalkalophilic lipase of Bacillus thermocatenulatus large-scale production, purification and properties: Aggregation behaviour and its effect on activity. J. Biotechn. 56: 89-102. 
  57. Nardini, M., D. A. Lang, K. E. Jaeger, and B. W. Dijkstra (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases. J. Biol. Chem. 275: 31219-31225. 
  58. Tyndall, J. D., S. Sinchaikul, L. A. Fothergill-Gilmore, P. Taylor, and M. D. Walkinshaw (2002) Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. J. Mol. Biol. 323: 859-869. 
  59. Kanwar, S. S., R. K. Kaushal, R. Gupta, and S. S. Chimni (2005) Methods for inhibition residual lipase activity in colorimetric assay: A comparative study. Ind. J. Biochem. Biophys. 42: 233-237. 
  60. Ogino, H., K. Miyamoto, and H. Ishikawa (1994) Organic-solvent-tolerant bacterium which secretes organic-solvent-stable lipolytic enzyme. Appl. Environ. Microbiol. 60: 3884-3886. 
  61. Nawani, N., S. D. Nirpjit, and K. Jagdeep (1998) A novel thermostable lipase from a thermophilic Bacillus sp. cjaracterization and esterification studies. Biotechnol. Lett. 20: 997-1000. 
  62. Eltaweel, M. A., R. N. Z. R. A. Rahman, A. B. Selleh, and M. Basri (2005) An organic solvent-stable lipase from Bacillus sp. strain 42. Ann. Microbiol. 55: 187-192. 
  63. Sikkema, J., J. A. de Bont, and B. Poolman (1994) Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269: 8022-8028. 
  64. Hazarika, S., P. Goswami, and N. N. Dutta (2003) Lipase catalysed transesterification of 2-o-benzylglycerol with vinyl acetate: solvent effect. Chem. Eng. J. 94: 1-10. 
  65. Kilbanov, A. M. (1986) Enzymes that work in organic-solvents. Chemtech. 16: 354-359. 
  66. Reichardt, C. (2003) Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH Publishers. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일