$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

대용량 광통신 부품 기술 동향

Optical Components for High Speed Optical Communications

한국광학회지 = Korean journal of optics and photonics, v.24 no.6, 2013년, pp.297 - 310  

백용순 (한국전자통신연구원 광인터넷부품연구실)

초록
AI-Helper 아이콘AI-Helper

스마트 기기, 클라우드 서비스, 광가입자망 등의 보급에 따른 멀티미디어 기반의 대용량 인터넷 트래픽의 급속한 증가로 통신 수요는 연 40%이상씩 증가하고 있다. 이러한 대역폭 증가를 수용하기 위해서 광통신용 광부품의 진화도 각 계층별로 빠르게 진행되고 있다. 가입자망에서는 변조속도 증가와 더불어 파장다중방식의 도입이 시작되고 있고, 매트로망에서는 보다 효율적인 망 운용을 위해 차세대 ROADM에 대한 개발이 진행중이며, 장거리 통신에서는 코히어런트 통신 기반의 새로운 변조방식이 도입되어 스팩트럼 효율을 향상시키고 있다. 본 논문에서는 이러한 폭발적인 통신 대역폭 증가 요구에 따른 광통신망의 진화와 이를 수용하기 위한 고속화, 효율화, 저전력화로 발전하고 있는 핵심 광부품에 대해 살펴본다.

Abstract AI-Helper 아이콘AI-Helper

With the explosive growth of internet data traffic due to the FTTH penetration, prevalence of smart devices and cloud network service, the demand for higher bandwidth is ever increasing with the pace of more than 40% annual growth. To accommodate ultra high bandwidth traffic, optical components in e...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
파장분할방식 수동가입자망은 어떠한 단점이 존재하는가? WDM-PON은 각 가입자별로 별개의 파장으로 통신하기 때문에 실제로는 점대점 방식의 통신을 취하게 되어 가입자가 광송수신기가 가지는 최대 대역폭의 사용이 가능하며 보안 측면에서 우수한 장점이 있다. 하지만 각 가입자별로 다른 종류의 파장을 가진 광원을 준비해야 하므로 비용이 상승하는 단점이 있다. 현재 비용적인 이점으로 대부분의 광가입자망이 TDM-PON 방식으로 구성되어 있다.
광가입자망의 가장 큰 특징은 무엇인가? 광가입자망의 가장 큰 특징은 앞서 언급한 바와 같이 기존 통신망 구축과는 비교할 수 없는 대규모 광통신 부품 수요에 있다. 또한 가입자망은 주로 전화국과 가입자간의 연결로 점대다점(point-to-multi point) 연결 성격을 가지고 있다.
수동가입자망은 어떠한 방식을 이용하는가? 따라서 광가입자망의 구성방식은 이러한 상황을 반영하여 대부분 수동가입자망(PON: Passive Optical Network)으로 구성되고 있다. 수동가입자망이란 전화국에서 가입자 근처까지는 단일 광섬유를 활용하고 원격지(Remote node)에서 각 가입자로는 수동분배기를 이용하여 분기한 뒤 개별 광섬유를 통해 전달되는 방식을 취한다. 이로 인해 수동가입자망은 광섬유의 효율적 사용은 물론 원격지에 전기를 필요로 하지 않기 때문에 유지 비용이 적게 드는 장점을 가지고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (48)

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightwave Technol. 28, 662-701 (2010). 

  2. P. J. Winzer and R.-J. Essiambre, "Advanced optical modulation formats," Proc. IEEE 94, 952-985 (2006). 

  3. J. S. Jeong, H.-K. Lee, and C.-H. Lee, "1.25 Gb/s operation at 50-GHz channel spacing based on intensity noise suppression of wavelength-locked Fabry-Perot laser diode," IEEE Photon. Technol. Lett. 21, 602-604 (2009). 

  4. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, "Noise suppression of inchorehent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems," J. Lightwave Technol. 23, 2399-2049 (2005). 

  5. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, "Extended-reach PON employing 10 Gb/s integrated reflective EAM-SOA," in Proc. ECOC (Brussels, Belgium, Sep. 2008), CD, paper Th.2.F.1. 

  6. H.-S. Kim, D. C. Kim, K.-S. Kim, B.-S. Choi, and O-K. Kwon, "10.7 Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier for colorless WDM-PON," Opt. Express 18, 23324-23330 (2010). 

  7. K.-H. Yoon, S. H. Oh, K. S. Kim, O. K. Kwon, D. K. Oh, Y.-O. Noh, and H.-J. Lee, "2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer bragg reflector," Opt. Express 18, 5557-5561 (2010). 

  8. K. Prince, T. B. Gibbon, R. Rodes, E. Hviid, C. I. Mikkelsen, C. Neumeyr, M. Ortsiefer, E. Ronneberg, J. Rosskopf, P. Ohlen, E. I. De Betou, B. Stoltz, E. Goobar, J. Olsson, R. Fletcher, C. Abbott, M. Rask, N. Plappert, G. Vollrath, I. T. Monroy, "GigaWaM-next-generation WDM-PON enabling gigabit per-user data bandwidth," J. Lightwave Technology 30, 1444-1454 (2012). 

  9. B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O. K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, "10-Gb/s direct modulation of polymerbased tunable external cavity lasers," Opt. Express 20, 20368-20375 (2012). 

  10. S. Kamei, "Recent progress on athermal AWG wavelength multiplexer," in Proc. OFC/NFOEC (San Diego, CA, USA, March 2009), CD, paper OWO1. 

  11. H. Nakamura, "NG-PON2 technologies," in Proc. OFC/NFOEC (Anaheim, CA, USA, March 2013), CD, paper NTh4F.5. 

  12. D. Qian, J. Hu, J. Yu, P. Ji, L. Xu, Ting Wang, M. Cvijetic, and T. Kusano, "Experimental demonstration of a novel OFDM-a based 10Gb/s PON architecture," in Proc. ECOC 2007 (Berlin, Germany, 2007), CD, paper 5.4.1. 

  13. B. P. Keyworth, "ROADM subsystems and technologies," in Proc. OFC/NFOEC (March 2005), CD, paper OWB5. 

  14. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, "Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit," ETRI Journal 31, 770-777 (2009). 

  15. Y.-T. Han, J. U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, "Fabrication of 10-channel polymer thermo-optic digital optical switch array," IEEE Photon. Technol. Lett. 21, 1556-1558 (2009). 

  16. R. Shankar, M. Florjanczyka, T. J. Halla, A. Vukovicb, and H. Hua, "Multi-degree ROADM based on wavelength selective switches: Architectures and scalability," Opt. Commun. 279, 94-100 (2007). 

  17. T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, "Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC," in Proc. OFC/NFOEC (San Diego, CA, USA, Feb. 2008), CD, paper OWC6. 

  18. P. Colbourne and B. Collings, "ROADM switching technologies," in Proc. OFC/NFOEC 2011 (Los Angeles, CA, USA, 2011), CD, paper OTuD1. 

  19. T. Strasser and J. Wagener, "Wavelength-selective switches for ROADM applications," IEEE J. Select. Topic Quantum Electron. 16, 1150-1157 (2010). 

  20. T. Watanabe, K. Suzuki, and T. Takahashi, "Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM," in Proc. OFC/NFOEC 2012 (Los Angeles, CA, USA, March 2012), CD, paper OTh3D.1. 

  21. S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, "Flexible and grid-less wavelength selective switch using LCOS technology," in Proc. OFC/NFOEC 2011 (Los Angeles, CA, USA, 2011), CD, paper OTuM3. 

  22. B. Collings, "New devices enabling software-defined optical networks," IEEE Communications Magazine March, 66-71 (2013). 

  23. L. Coldren, G. Fish, Y. Akulova, J. Barton, L. Johansson, and C. Coldren, "Tunable semiconductor lasers: A tutorial," J. Lightwave Technol. 22, 193-202 (2004). 

  24. H. Hatakeyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, "Wavelengthselectable microarray light sources for wide-band DWDM applications," IEEE J. Select. Topics Quantum Electron. 8, 1341-1348 (2002). 

  25. J. D. Berger, Y. Zhang, J. D. Grade, H. Lee, S. Hrinya, and H. Jerman, "Widely tunable external cavity diode laser based on a MEMS electrostatic rotary actuator," in Proc. OFC 2001 (Anaheim, CA, USA, 2001), CD, paper TuJ2. 

  26. L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Select. Topics Quantum Electron. 6, 988-999 (2000). 

  27. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, A. C. Carter, and M. J. Wale, "Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance," IEEE J. Select. Topics Quantum Electron. 11, 149-156 (2005). 

  28. J. O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan, R. Laroy, and H. de Vries, "Design of a widely tunable modulated grating y-branch laser using the additive vernier effect for improved super-mode selection," in Proc. Semiconductor Laser Conference 2002 (Garmisch-Partenkirchen, Germany, Sep. 2002), pp. 99-100. 

  29. http://www.ieee802.org/3/ba/. 

  30. Y. Baek, Y. T. Han, C. W. Lee, D. H. Lee, O. K. Kwon, J. W. Shin, S. H. Park, and Y. A. Leem, "Optical components for 100G ethernet transceivers," in Proc. OECC 2012 (Busan, Korea, 2012), pp. 218-219. 

  31. C. Cole, "Next generation CFP modules," in Proc. OFC/ NFOEC 2012 (Los Angeles, CA, USA, March 2012), CD, paper NTu1F.1. 

  32. P. J. Winzer, "High-spectral-efficiency optical modulation formats," J. Lightwave Technol. 30, 3824-3835 (2012). 

  33. L. Kazovsky, G. Kalogerakis, and W. Shaw, "Homodyne phase-shift-keying systems: Past challenges and future opportunities," J. Lightwave Technol. 24, 4876-4884 (2006). 

  34. S. Chandrasekhar and X. Liu, "Enabling components for future high-speed coherent communication systems," in Proc. OFC/NFOEC 2011 (Los Angeles, CA, USA, March 2011), CD, paper OMU5. 

  35. OIF, "100 G ultra long Haul DWDM framework document," www.oiforum.com. 

  36. H. Yamazaki, T. Yamada, K. Suzuki, T Goh, A Kaneko, A. Sano, E. Yamada, and Y. Miyamoto, "Integrated 100-Gb/s PDM-QPSK modulator using a hybrid assembly technique with silica-based PLCs and LiNbO3 phase modulators," in Proc. ECOC 2008 (Brussels, Belgium, 2008), CD, paper Mo.3.C.1. 

  37. K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K.-O. Velthaus, and I. Woods, "High performance 40 GHz InP Mach-Zehnder modulator," in Proc. OFC 2012 (Los Angeles, CA, USA, March 2012), CD, paper OW4F.7. 

  38. N. Kono, T. Kitamura, H. Yagi, N. Itabashi, T. Tatsumi, Y. Yamauchi, K. Fujii, K. Horino, S. Yamanaka, K. Tanaka, K. Yamaji, C. Fukuda, and H. Shoji, "Compact and low power DP-QPSK modulator module with InP-based modulator and driver ICs," in Proc. OFC 2013 (Anaheim, CA, USA, March 2013), CD, paper OW1G.2. 

  39. L. Stampoulidis, M. F. O'Keefe, E. Giacoumidis, R. G. Walker, Y. Zhou, N. Cameron, E. Kehayas, I. Tomkos, and L. Zimmermann, "Fabrication of the first high-speed GaAs IQ electro-optic modulator arrays and applicability study for low-cost Tb/s direct-detection optical OFDM networks," in Proc. OFC 2013 (Anaheim, CA, USA, March 2013), CD, paper OW1G.4. 

  40. B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, "112 Gb/s DP-QPSK transmission over 2427 km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver," in Proc. OFC 2013 (Anaheim, CA, USA, March 2013), CD, paper OTh1D.1. 

  41. Y. Kurata, Y. Nasu, M. Tamura, R. Kasahara, S. Aozasa, T. Mizuno, H. Yokoyama, S. Tsunashima, and Y. Muramoto, "Silica-based PLC with heterogeneously-integrated PDs for one-chip DP-QPSK receiver," Opt. Express 20, B264-B269 (2012). 

  42. K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, "100-Gbit/s PDM-QPSK coherent receiver with wide dynamic range and excellent common-mode rejection ratio," Opt. Express 19, B125-B130 (2011). 

  43. J. Wang, C. Zawadzki, N. Mettbach, W. Brinker, Z. Zhang, D. Schmidt, N. Keil, N. Grote, and M. Schell, "Polarization insensitive 25-Gbaud direct D(Q)PSK receiver based on polymer planar lightwave hybrid integration platform," Opt. Express 19, 12197-12207 (2011). 

  44. P. Runge, S. Schubert, A. Seeger, K. Janiak, J. Stephan, D. Trommer, P. Domburg, and M. L. Nielsen, "Monolithic InP receiver chip with a $90^{\circ}$ hybrid and 56 GHz balanced photodiodes," Opt. Express 20, B250-B255 (2012). 

  45. H. Yamazaki, T. Goh, T. Saida, Y. Hashizume, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, "Dual-carrier dual-polarization IQ modulator driven with high-speed DACs for 400-Gb/s applications," in Proc. ECOC 2008 (Brussels, Belgium, 2008), CD, paper We.3.E.1. 

  46. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, "Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network," IEEE Commun. Mag. 48, 138-145 (2010). 

  47. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, "Mode-division multiplexing over 96 km of few-mode fiber using coherent $6{\times}6$ MIMO processing," J. Lightwave Technol. 30, 521-531 (2012). 

  48. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, "WDM/SDM transmission of $10{\times}128$ -Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km.b/s/Hz," Opt. Express 20, 706-711 (2012). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트