$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

한국 전통 발효식품에서 분리한 인산가용화 효모의 특성

Characterization of Phosphate Solubilizing Yeasts from Korean Traditional Fermented Foods

초록

한국 전통 발효식품에서 분리한 효모로부터 인산 가용화 활성이 우수한 5균주를 선발하였다. 선발한 균주 중 2균주는 Pichia anomala로 동정되었고, 3균주는 각각 Pichia farinosa, Candida versatilis, Pichia subpelliculosa로 동정되었다. 인산 가용화 효모는 $20{\sim}35^{\circ}C$의 온도에서 잘 자라는 중 온성 효모였으며 P. farinosa Y669는 $45^{\circ}C$의 고온에서도 생장하였다. C. versatilis Y907 균주는 pH 5~6의 좁은 pH 범위에서 생장하였고 15%의 NaCl 농도까지 내성을 나타내는 호염성 균주였다. 그 외 4균주는 pH 4.0~8.0에서 생장하였으며 NaCl 10% 농도에서 내성을 나타내었다. 인산 가용화 균주는 토양에서도 8주 동안 $10^7{\sim}10^8$ cfu/g의 밀도를 유지하며 생존하였다. 분리균주 중 인산 가용화 활성은 P. subpelliculosa Y1101가 가장 우수하였으며 배양 11일 후 697.2 ug/mL의 유리인산을 생성하였다.

Abstract

Of 1,100 yeast strains which were isolated from various Korean fermented foods, screened for phosphate solubilization, five strains showed the ability to solubilize tricalcium phosphate. The 26S rDNA domain D1-D2 sequence analysis revealed the identification of strain Y393 and Y524 as Pichia anomala (99.8 and 100% identity, respectively), Y669 as Pichia farinosa (100% identity), Y901 as Candida versatilis (100% identity), and Y1101 as Pichia subpelliculosa (100% identity). All the phosphate solubilizing strains showed mesophilic characteristics. The temperature range for growth of 4 strains was $20{\sim}35^{\circ}C$ and P. farinosa Y669 was able to grow up to $45^{\circ}C$. The strain C. versatilis Y907 was able to grow at pH range of 5.0~6.0 and showed halophilic characteristics with tolerance to 15% of NaCl concentration. The Phosphate solubilizing yeast strains were survived well in bed soil for 8 weeks which were maintained densities of $10^7{\sim}10^8$ cfu/g. The highest phosphate solubilizing activity was observed in P. subpelliculosa Y1101. It solubilized 697.2 ug/mL of phosphorus from tricalcium phosphate with decrease in pH from 6.8 to 4.37 after 11 days of inoculation.

참고문헌 (19)

  1. Mundra, S., Arora, R. and Stobdan, T. 2011. Solubilization of insoluble inorganic phosphates by a novel temperature-, pH-, and salt-tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India. World J. Microbiol. Biotechnol. 27:2387-2396. 
  2. Na, J. H., Choi, J. H., Jin, R. D., Ko, H. S., Park, R. D. and Kim, K. Y. 2009. Phosphate solubilization and plant growth promotion by crop associated bacteria. Korean J. Soil Sci. Fert. 42:29-36. 
  3. Omar, S. A. 1998. The role of rock-phosphate-solubilizing fungi and vesicular-arbuscular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 14:211-218. 
  4. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil connection with vital activity of some microbial species. Microbiologiya 17:362-370. 
  5. Sambrook, J. and Russell, D. W. 2001. Small-scale preparations of yeast DNA. In: Molecular Cloning A Laboratory Manual, pp. 4.70-4.71. Eds. Sambrook, J. and Russell, D. W. Cold Spring Harbor Laboratory Press, New York. 
  6. Suh, J. S. and Kwon, J. S. 2008. Characterization of phosphatesolubilizing microorganisms in upland and plastic film house soils. Korean J. Soil Sci. Fert. 41: 348-353. (in Korean) 
  7. Vassileva, M., Azcon, R., Barea, J. M. and Vassilev, N. 1998. Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. J. Biotechnol. 63:67-72. 
  8. Zhao, X. R. and Lin, Q. M. 2001. A review of phosphate-dissolving microorganisms. Soil Fertilizer 3:7-11. 
  9. Al-Fatih, A. M. 2005. Phosphate solubilization in vitro by some soil yeasts. Qatar Univ. Sci. J. 25:119-125. 
  10. Alfred, B. 2011. The importance and ecology of yeasts in soil. Soil Biol. Biochem. 43(1):1-8. 
  11. Falih, A. M. and Wainwright, M. 1995. Nitrification, S-oxidation and P-solubilization by the soil yeast Williopsis californica and by Saccharomyces cerevisiae. Mycol. Res. 99(2):200-204. 
  12. Goldstein, A. H. 1986. Bacterial solubilization of mineral phosphate:Historical perspectives and future prospects. Am. J. Altern. Agri. 1:51-57. 
  13. Goldstein, A. H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agri. Hort. 12:185-193. 
  14. Gomori, G. 1955. Preparation of buffers for use in enzyme studies. Method. Enzymol. 1:138-146. 
  15. Halder, A. K., Mishra, A. K., Bhattacharyya, P. and Chakrabartty, P. K. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. Appl. Micorbiol. 36:81-92. 
  16. Kim, K. Y., Jordan, D. and Krishnan, H. B. 1997. Rahnella aqualitis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153:273-277. 
  17. Kpomblekou, K. and Tabatabai, M. A. 1994. Effect of organic acid on release of phosphorus from phosphate rock. Soil Sci. 158:442-451. 
  18. Kurtzman, C. P. and Robnett, C. J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73(4):331-371. 
  19. Lages, F., Silva-Graca, M. and Lucas, C. 1999. Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology 145(9):2577-2585. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일