$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

사용후핵연료의 장기 건식 건전성 성능과 주요 열화 기구에 관한 고찰
Review on Spent Nuclear Fuel Performance and Degradation Mechanisms under Long-term Dry Storage 원문보기

Journal of nuclear fuel cycle and waste technology = 방사성폐기물학회지, v.11 no.4, 2013년, pp.333 - 349  

김주성 (한양대학교) ,  국동학 (한양대학교) ,  심지형 (한양대학교) ,  김용수 (한양대학교)

초록
AI-Helper 아이콘AI-Helper

최근 국내에서도 원전 부지 내에 건설된 습식저장조의 용량이 곧 포화될 것으로 예상되어 사용후핵연료의 건식저장에 관한 논의가 활발하다. 이 논문에서는 앞으로 다양하게 논의될 저장시스템의 안전성과 함께 장기 건식저장 시 발생하는 사용후핵연료의 특성 및 건전성 변화에 대해 이제까지 국내외에서 연구 보고된 내용들을 면밀히 검토하고 향후 추구해야 할 연구방향을 제시하고자 하였다. 조사 결과 건식저장 기간 동안 진행될 수 있는 여러 피복관 열화기구 중에서 가장 대표적인 기구는 크립 변형과 수소화물에 의한 영향이었으며, 이들이 사용후핵연료 장기 건식저장 시 규제기술기준의 주요 근간을 이루고 있는 것으로 분석되었다. 한편 과거에는 피복관의 크립 변형이 가장 중요한 열화기구로 평가되었으나, 최근의 연구 결과를 통해 수소화물에 의한 영향이 더 심각한 것으로 드러났고 이는 미국의 규제기준과 새로운 온도 범위를 제시하고 있는 일본의 규제기준에서 확인할 수 있었다. 그러나, 아직까지 수소화물에 의한 영향이 발생하는 응력과 온도 조건을 명확히 규명할 수 있는 연구 자료가 충분하지 못하며, 나아가 사용후핵연료의 취급 시 거동에 대한 연구도 지속적으로 수행해야 할 부분으로 드러났다. 따라서 국내 사용후핵연료 특성에 맞는 건식저장조건을 수립하기 위해서는 국내에서도 본격적인 연구를 통해 이들 자료에 대한 충분한 생산과 평가 및 분석이 뒤따라야 할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

As the capacity of spent nuclear fuel storage pool at reactor sites becomes saturated in ten years, long term dry storage strategy has been recently discussed as an alternative option in Korea. In this study, we reviewed safety-criteria-related research results on spent nuclear fuel performance and ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 건식저장 조건에서 사용후핵연료 피복관의 연성 감소요인은 크게 수소화물에 의한 것과 중성자 조사에 의한 것이 있는데 조사에 의한 경화는 상대적으로 높은 피복관의 온도로 인해 어느 정도 완화 될 수 있을 것으로 예상된다. 따라서 이 연구에서는 조사에 의한 영향을 제외한 사용후핵연료 피복관의 재료적 특성을 보고자 하였다.
  • 따라서 이 연구에서는 방출 연소도에 따른 사용후핵연료의 산화막 두께, 수소농도, 봉내압 등의 사용후핵연료 피복관 열화에 직·간접적으로 영향을 미치는 국내 사용후핵연료의 재료적 조건을 조사하였고 Origen-ARP를 이용하여 연소이력에 따른 사용후핵연료의 방사능 및 붕괴열에 대해 계산하였다. 또한 건식저장 동안 사용후핵연료 피복관의 주요 열화기구로 작용하고 있는 수소화물재배열, 지연수소화균열 등의 주요 열화기구를 분석하고 이를 바탕으로 건식저장을 경험한 일부 선진국의 규제요건을 재료적인 관점에서 기술하였다.
  • 본 연구에서는 건식저장 상황에서 사용후핵연료의 특성 및 건전성에 대하여 현재까지 보고되고 논의된 사항들을 면밀히 재검토하고 향후 추구해야 할 연구방향을 제시 하고자 하였다. 본 연구 결과를 요약 정리하면 아래와 같다.
  • 앞서 언급하였듯이, 건식저장 기간 중 사용후핵연료 피복관의 물성을 저하시키는 열화기구는 크립, 수소화물 재배열, 지연수소화균열, 응력부식균열, 산화 및 부식 등이 있지만 본 연구에서는 가장 주요한 열화기구인 크립과 수소화물에 의한 열화기구에만 초점을 맞추고자 한다.

가설 설정

  • 이온도분포는 저장용기 바깥의 외부 온도는 40℃ 로 고정하고 공기의 열전달계수를 상수로 가정한 다음 FALCON코 드를 이용하여 시간에 따른 피복관의 온도변화를 구한 식이다. 또한 초기 저장온도를 400℃ 로 가정하였고 연소도 60 GWd/tU의 사용후핵연료가 8.5 년 동안 습식 냉각된 후의 붕괴열을 기반으로 하였다. 한편 실제 핵연료를 운반 용기에 저장하고 15 년 후에 인출하여 실험한 Surry 연료의 경우 아래의 온도 변화 곡선을 제시하였다[42].
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
건식저장 방법이 현실적인 대안으로 떠오르는 이유는 무엇인가? 이 기간이 끝난 후 사용후핵연료를 처분하는 방법은 심지층에 영구 처분하거나, 혹은 재처리 후 발생하는 고준위 폐기물을 영구처분하는 방식이 있다. 현재 우리나라는 아직 최종 처분 방식을 결정하지 못하고 국내 경수로에서 발생된 사용후핵연료 모두를 발전소 내 수중 저장조에서 보관되고 있다. 그러나 국내 원전의 저장조 용량의 한계로 2025년경에는 이 시설이 포화될 것으로 예상되고 있다. 따라서 사용후핵연료를 처분하기 위한 그 중간단계로 사용후핵연료를 공기나 불활성 기체로 채워진 별도의 용기에 저장하는 건식저장 방법이 현실적인 대안으로 부상하고 있다.
건식저장 방식의 장점은 무엇인가? 따라서 사용후핵연료를 처분하기 위한 그 중간단계로 사용후핵연료를 공기나 불활성 기체로 채워진 별도의 용기에 저장하는 건식저장 방법이 현실적인 대안으로 부상하고 있다. 건식저장 방식의 경우 안전성, 경제성 측면에서 유리한 것으로 평가되고 있으며 최근에는 대부분의 국가에서 이 방식을 이용하고 있는 추세이다.
사용후핵연료의 건식저장에 관한 논의가 활발한 이유는 무엇인가? 최근 국내에서도 원전 부지 내에 건설된 습식저장조의 용량이 곧 포화될 것으로 예상되어 사용후핵연료의 건식저장에 관한 논의가 활발하다. 이 논문에서는 앞으로 다양하게 논의될 저장시스템의 안전성과 함께 장기 건식저장 시 발생하는 사용후핵연료의 특성 및 건전성 변화에 대해 이제까지 국내외에서 연구 보고된 내용들을 면밀히 검토하고 향후 추구해야 할 연구방향을 제시하고자 하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (95)

  1. H.J. Choi, D. Cho, D. Kook, and J. Choi, "Current status of spent fuels and the development of computer programs for the PWR spent fuel management in Korea", Progress in Nuclear Energy, 53(3), pp. 290-297 (2011). 

  2. Nuclear Safety and Security Commission (NSSC), Annual Report, p.180 (2012). 

  3. M. A. McKinnon and V. A. DeLoach, "Spent nuclear fuel storage - Performance tests and demonstrations", Pacific Northwest Laboratory Report, PNL--8451 (1993). 

  4. M. A. McKinnon and M. E. Cunningham, "Dry Storage Demonstration for High-Burnup Spent Nuclear Fuel-Feasibility Study", Pacific Northwest National Laboratory Report, PNNL-14390 (2003). 

  5. H. Tsai and M. C. Billone, "Thermal Creep of Irradiated Zircaloy Cladding", ASTM special technical publication, 1467, pp. 632-650 (2006). 

  6. R. E. Einziger, S. D. Atkin, V. Pasupathi, and D. E. Stellrecht, "High temperature postirradiation materials performance of spent pressurized water reactor fuel rods under dry storage conditions", Nucl. Technol., 57(1), pp. 65-80 (1982). 

  7. W. Goll, H. Spilker, and E. H. Toscano, "Short-time creep and rupture tests on high burnup fuel rod cladding", Journal of nuclear materials, 289(3), pp. 247-253 (2001). 

  8. H. M. Chung, R. S. Daum, J. M. Hiller, and M. C. Billone, "Charateristics of Hydride Precipitation and Reorientation in Spent-Fuel Cladding", ASTM special technical publication, 1423, pp. 561-582 (2002). 

  9. H. C. Chu, S. K. Wu, and R. C. Kuo, "Hydride reorientation in Zircaloy-4 cladding", Journal of nuclear materials, 373(1-3), pp. 319-327 (2008). 

  10. M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Y. Shinohara, and T. Takeda, "Evaluation of Hydride Reorientation Behavior and Mechanical Properties for High-Burnup Fuel-Cladding Tubes in Interim Dry Storage", ASTM special technical publication, 1505, pp. 651-673 (2009). 

  11. R. Dutton, K. Nuttall, M. P. Puls, and L. A. Simpson, "Mechanisms of hydrogen induced delayed cracking in hydride forming materials", Metallurgical Transactions A, 8, pp. 1553-1562 (1977). 

  12. Y. S. Kim, "Delayed hydride cracking of spent fuel rods in dry storage", Journal of nuclear materials, 378(1), pp. 30-34 (2008). 

  13. M. P. Puls, "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys", Journal of nuclear materials, 393(2), pp. 350-367 (2009). 

  14. K. Une, "Influences of cesium and cesium oxide on iodine stress corrosion cracking of Zircaloy-2 in out-of-pile and in-pile conditions", Journal of nuclear materials, 87(1), pp. 207-210 (1979). 

  15. A. Tassoji, R. E. Einziger, and A. K. Miller, "Modeling of Zircaloy Stress-Corrosion Cracking: Texture Effects and Dry storage Spent Fuel Behavior", ASTM special technical publication, 824, pp. 595-626 (1984). 

  16. M. A. McKinnon, R. E. Einziger, D. L. Baldwin, and S. G. Pitman, "Data Needs for Long-Term Dry Storage of LWR Fuel", Electric Power Research Institute Report, EPRI-TR-108757 (1998). 

  17. L. D. Blackburn, D. G. Farwick, S. R. Fields, L. A. James, and R. A. Moen, "Maximum Allowable Temeprature For Storage of Spent Nuclear Reactor Fuel", Handford Engineering Develoment Laboratory Report, HEDL-TME 78-37 (1978). 

  18. M. Peehs, F. Garzarolli, and W. Goll, "Assessment of Dry Storage Performance of Spent LWR Fuel Assemblies with Increasing Burnup", IAEASM-352-39, pp. 313-324 (1984). 

  19. M. Peehs and J. Fleisch, "LWR Spent Fuel Storage Behaviour", Journal of nuclear materials, 137(3), pp. 190-202 (1986). 

  20. B. A. Chin, M. A. Khan, and J. C. L. Tarn, "Deformation and Fracture Map Methdology for Predicting Cladding Behavior during Dry Storage", Pacific Northwest Laboratory Report, PNL-5998 (1986). 

  21. US NRC Spent Fuel Project Office, "Interim Staff Guidance-11, Revision 1" (2000). 

  22. D. H. Kook, J. W. Choi, J. S. Kim, and Y. S. Kim, "Review of Spent Fuel Integrity Evaluation For Dry Storage", Nuclear Engineering and Technology, 45(1), pp. 115-124 (2013). 

  23. J. Kessler and R. E. Einziger, "Technical Bases for Extended Dry Storage of Spent Nuclear Fuel", Electric Power Research Institute Report, EPRI-1003416 (2002). 

  24. B. Hanson, H. Alsaed, C. Stockman, D. Enos, R. Meyer, and K. Sorenson, "Gap Analysis to Support Extended Storage of Used Nuclear Fuel Rev.0", Pacific Northwest National Laboratory Report, PNNL-20509, p. 198 (2012). 

  25. US NRC Spent Fuel Project Office, "Interim Staff Guidance-11, Revision 3" (2003). 

  26. U.S. Nuclear Regulatory Commission (NRC), "Standard review plan for dry cask storage systems", Nuclear Regulatory Commission Report, NUREG-1536, revision 1 (2010). 

  27. K. Kamimura, "Integrity criteria of spent fuel for dry storage in Japan", International Seminar on Spent Fuel Storage (ISSF), Tokyo, Japan (2010). 

  28. EPRI, "Spent Fuel Transportation Applications: Longitudinal Tearing Resulting from Transportation Accidents-A Probabilistic Treatment", Electric Power Research Institute Report, EPRI-1013448 (2006). 

  29. J. S. Kim, H. K. Yoon, D. H. Kook, and Y. S. Kim, "A Study on the Initial Characteristics of Domestic Spent Nuclear Fuels for Long Term Dry Storage", Nuclear Engineering and Technology, 45, pp. 337-384 (2013). 

  30. S.J. Kim, K. Ho Kim, J. Hyuk Baek, B. Kwon Choi, Y. Hwan Jeong, and Y. Ho Jung, "The effect of hydride on the corrosion of Zircaloy-4 in aqueous LiOH solution", Journal of nuclear materials, 256(1-3), pp. 114-123 (1998). 

  31. S. Muller and L. Lanzani, "Corrosion of zirconium alloys in concentrated lithium hydroxide solutions", Journal of nuclear materials, 439, pp. 251-257 (2013). 

  32. Y.S. Kim, Y.H. Jeong, and S.B. Son, "A study on the effects of dissolved hydrogen on zirconium alloys corrosion", Journal of nuclear materials, 444(1-3), pp. 349-355 (2014). 

  33. M. P. Short, D. Hussey, B. K. Kendrick, T. M. Besmann, C. R. Stanek, and S. Yip, "Multiphysics modeling of porous CRUD deposits in nuclear reactors", Journal of nuclear materials, 443(1-3), pp. 579-587 (2013). 

  34. G. A. Berna, C. E. Beyer, K. L. Davis, and D. D. Lanning, "FRAPCON-3: A Computer Code for the Calculation of Steady-state, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup", NUREG/CR-6534, PNNL-11513 (1997). 

  35. B. G. Kammenzind, D. G. Franklin, H. R. Peters, and W. J. Duffin, "Hydrogen Pickup and Redistribution in Alpha-Annealed Zircaloy-4", ASTM special technical publication, 1295, pp. 338-369 (1996). 

  36. R. E. Einziger, H. C. Tsai, M. C. Billone, and B. A. Hilton, Examination of Spent PWR Fuel Rods After 15 Years in Dry Storage (2002). 

  37. H. Tsai and M. C. Billone, "Characterization of High-Burnup PWR and BWR Rods", Nuclear Safety Research Conference, October 28-30, 2002, Washington D.C., 2002. 

  38. W. Wiesenack, "Review of Halden reactor project high burnup fuel data that can be used in safety analyses", Nuclear Engineering and Design, 172, pp. 83-92 (1997). 

  39. K. J. Geelhood, W. G. Luscher, and C. E. Beyer, "FRAPCON-3.4: A Computer Code for the Calculation of Steady-State Thermal-Mechanical behavior of Oxide Fuel Rods for High Burnup", NUREG/CR-7022, PNNL-19418, 1 (2011). 

  40. S. M. Bowman and L. C. Leal, "ORIGEN-ARP: Automatic Rapid Process for Spent Fuel Depletion, Decay, and Source Term Analysis", NUREG/CR-0200, Revision 6, 1 (2000). 

  41. Y. Rashid and R. Dunham, "Creep Modeling and Analysis Methodlology for Spent Fuel in Dry Storage", Electric Power Research Institute Report, EPRI-1003135 (2001). 

  42. R. E. Einziger, H. Tsai, M. C. Billone, and B. A. Hilton, "Examination of Spent PWR Fuel Rods after 15 Years in Dry Storage", Argonne National Laboratory Report, ANL-03/17 (2003). 

  43. C. W. Enderlin, D. R. Rector, J. M. Cuta, R. E. Dodge, and T. E. Michener, "COBRA-SFS: A thermal- hydraulic analysis code for spent fuel storage and transportation casks", Pacific Northwest National Laboratory Report, PNL-10782 (1995). 

  44. X. Heng, G. Zuying, and Z. Zhiwei, "A numerical investigation of natural convection heat transfer in horizontal spent-fuel storage cask", Nuclear Engineering and Design, 213, pp. 59-65 (2002). 

  45. R. A. Brewster, E. Baglietto, E. Volpenhein, and C. S. Bajwa, "CFD Analyses of the TN-24P PWR Spent Fuel Storage Cask", ASME 2012 Pressure Vessels and Piping Conference, 3, pp. 17-25 (2012). 

  46. J. C. Lee, W. S. Choi, K. S. Bang, K. S. Seo, and S. Y. Yoo, "Thermal-fluid flow analysis and demonstration test of a spent fuel storage system", Nuclear Engineering and Design, 239(3), pp. 551-558 (2009). 

  47. R. Lo Frano, G. Pugliese, and G. Forasassi, "Thermal analysis of a spent fuel cask in different transport conditions", Energy, 36(4), pp. 2285-2293 (2011). 

  48. S. H. Yoo, H. C. No, H. M. Kim, and E. H. Lee, "CFD-assisted scaling methodology and thermalhydraulic experiment for a single spent fuel assembly", Nuclear Engineering and Design, 240(12), pp. 4008-4020 (2010). 

  49. S. H. Yoo, H. C. No, H. M. Kim, and E. H. Lee, "Full-scope simulation of a dry storage cask using computational fluid dynamics", Nuclear Engineering and Design, 240, pp. 4111-4122 (2010). 

  50. K. Kamimura, N. Kohno, K. Itoh, Y. Tsukuda, T. Yasuda, M. Aomi, K. Murai, H. Fujii, and Y. Senda, "Thermal creep tests of BWR and PWR spent fuel cladding", IAEA-CN-102/27, pp. 375-385 (2003). 

  51. R. E. Einsiger and R. Kohli, "Low-temperature rupture behavior of Zircaloy-clad pressurized water reactor spent fuel rods under dry storage conditions", Nucl. Technol., 67(1), pp. 107-123 (1984). 

  52. H. Spilker, M. Peehs, H.P. Dyck, G. Kaspar, and K. Nissen, "Spent LWR fuel dry storage in large transport and storage casks after extended burnup", Journal of nuclear materials, 250(1), pp. 63-74 (1997). 

  53. K. Ito, K. Kamimura, and Y. Tsukuda, "Evaluation of Irradiation Effect on Spent Fuel Cladding Creep Properties", Proceedings of the 2004 International meeting on LWR fuel performance, pp. 440-451 (2004). 

  54. Y. R. Rashid, D. J. Sunderland, and R. O. Montgomery, "Creep as the Limiting Mechanism for Spent Fuel Dry Storage", Electric Power Research Institute Report, EPRI-1001207 (2000). 

  55. R. N. Singh, R. Kishore, S. S. Singh, T. K. Sinha, and B. P. Kashyap, "Stress-reorientation of hydrides and hydride embrittlement of Zr-2.5wt% Nb pressure tube alloy", Journal of nuclear materials, 325(1), pp. 26-33 (2004). 

  56. S. I. Hong and K. W. Lee, "Stress-induced reorientation of hydrides and mechanical properties of Zircaloy-4 cladding tubes", Journal of nuclear materials, 340, pp. 203-208 (2005). 

  57. M. C. Billone, T. A. Burtseva, and R. E. Einziger, "Ductile-to-brittle transition temperature for highburnup cladding alloys exposed to simulated dryingstorage conditions", Journal of nuclear materials, 433(1-3), pp. 431-448 (2013). 

  58. H. C. Chu, S. K. Wu, K. F. Chien, and R. C. Kuo, "Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding", Journal of nuclear materials, 362, pp. 93-103 (2007). 

  59. K. Kese, "Hydride re-orientation in zircaloy and its effect on the tensile properties", Swedish Nuclear Power Inspectorate, (SKI) Report 98:32 (1998). 

  60. H. M. Chung, "Understanding Hydride- and Hydrogen- related Processes in High-burnup Cladding in Spent-fuel Storage and Accident Situations", Proceedings of the 2004 International meeting on LWR fuel performance, pp. 470-479 (2004). 

  61. C. Cappelaere, R. Limon, D. Gilbon, T. Bredel, O. Rabouille, P. Bouffioux, and J. P. Mardon, "Impact of Irradiation Defects Annealing on Long-Term Thermal Creep of Irradiated Zircaloy-4 Cladding Tube", ASTM special technical publication, 1423, pp. 720-737 (2002). 

  62. R. S. Daum, S. Majumdar, Y. Liu, and M. C. Billone, "Radial-hydride Embrittlement of High-burnup Zircaloy- 4 Fuel Cladding", Journal of nuclear science and technology, 43(9), pp. 1054-1067 (2006). 

  63. T. Oohama, M. Okunishi, Y. Senda, K. Murakami, and M. Sugano, "Study on Hydride Re-Orientation Properties in Zircaloy-4 Cladding Tube", Nuclear reactor thermal hydraulics, operations and safety, 2004, p. N6P117 (2004). 

  64. S. Valance, J. Bertsch, and A. M. Alam, "Statistical Analysis of Hydride Reorientation Properties in Irradiated Zircaloy-2", ASTM special technical publication, 1529, pp. 523-543 (2011). 

  65. K. Sakamoto and M. Nakatsuka, "Stress Reorientation of Hydrides in Recrystallized Zircaloy-2 Sheet", Journal of nuclear science and technology, 43(9), pp. 1136-1141 (2006). 

  66. Y. Mishima, T. Okubo, and E. Sano, "Effect of thermal cycling on the stress orientation of hydride in zircaloy", Metallurgical Transactions, 2(7), pp. 1995-1997 (1971). 

  67. M. P. Puls, "The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals", Acta Metallurgica, 29(12), pp. 1961-1968 (1981). 

  68. P. Vizcaino, A. Banchik, and J. Abriata, "Hydrogen in Zircaloy-4: effects of the neutron irradiation on the hydride formation", Journal of Materials Science, 42(16), pp. 6633-6637 (2007). 

  69. Z. L. Pan and M. P. Puls, "Precipitation and dissolution peaks of hydride in Zr-2.5Nb during quasistatic thermal cycles", Journal of Alloys and Compounds, 310(1-2), pp. 214-218 (2000). 

  70. R. N. Singh, S. Mukherjee, A. Gupta, and S. Banerjee, "Terminal solid solubility of hydrogen in Zralloy pressure tube materials", Journal of Alloys and Compounds, 389(1-2), pp. 102-112 (2005). 

  71. B. F. Kammenzind, B. M. Berquist, R. Bajaj, P. H. Kreyns, and D. G. Franklin, "The Long-Range Migration of Hydrogen Through Zircaloy in Response to Tensile and Compressive Stress Gradients", ASTM special technical publication 1354, pp. 196-232 (2000). 

  72. C. J. Simpson and C. E. Ells, "Delayed hydrogen embrittlement in Zr-2.5wt % Nb", Journal of nuclear materials, 52(2), pp. 289-295 (1974). 

  73. IAEA, "Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors", International Atomic Energy Agengy Report, IAEA-TECDOC-1410 (2004). 

  74. F. R. Ambler, "Effect of Direction of Approach to Temperature on the Delayed Hydrogen Cracking Behabior of Cold-Worked Zr-2.5Nb", ASTM special technical publication, 824, pp. 653-674 (1984). 

  75. M. P. Puls, "On the consequences of hydrogen supersaturation effects in Zr alloys to hydrogen ingress and delayed hydride cracking", Journal of nuclear materials, 165(2), pp. 128-141 (1989). 

  76. S. Q. Shi, G. K. Shek, and M. P. Puls, "Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys", Journal of nuclear materials, 218(2), pp. 189-201 (1995). 

  77. Y. S. Kim, "Author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys, M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367", Journal of nuclear materials, 399(2-3), pp. 240-247 (2010). 

  78. Y. S. Kim, "Author's 2nd reply to comments on author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys", M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367", Journal of nuclear materials, 399(2-3), pp. 259-265 (2010). 

  79. F. Yunchang and D. A. Koss, "The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet", Metallurgical Transactions A, 16(4), pp. 675-681 (1985). 

  80. G. W. Parry and W. Evans, "Occurrence of ductile hydrides in zircaloy-2", Nucleonics, 22, p. 117 (1964). 

  81. W. M. Mueller, J. P. Blackledge, G. G. Libowitz, and U. S. A. E. Commission, Metal hydrides: Academic Press (1968). 

  82. L. A. Simpson and C. D. Cann, "Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys", Journal of nuclear materials, 87, pp. 303-316 (1979). 

  83. M. C. Billone and Y. Liu, "Perspectives on DBTT for High-Burnup Fuel Cladding", ESCP Meeting, St. Petersburg, FL , May 6 (2013). 

  84. S. R. Reid and T. Y. Reddy, "Effect of strain hardening on the lateral compression of tubes between rigid plates", International Journal of Solids and Structures, 14(3), pp. 213-225 (1978). 

  85. M. Nemat-Alla, "Reproducing hoop stress-strain behavior for tubular material using lateral compression test", International Journal of Mechanical Sciences, 45(4), pp. 605-621 (2003). 

  86. L. G. Bell and R. G. Duncan, "Hydride reorientation in Zr-2.5%Nb; How it is Affected by Stress, Temperature and Heat Treatment", Atomic Energy of Canada Limited Report, AECL-5110 (1975). 

  87. A. C. Wallace, G. K. Shek, and O. E. Lepik, "Effects of Hydride Morphology on Zr-2.5Nb Fracture Toughness", ASTM special technical publication, 1023, pp. 66-88 (1989). 

  88. ASTM B811-02, "Standard Specification for Wrought Zirconium Alloy Seamless Tubes for Nuclear Reactor Fuel Cladding" (2007). 

  89. P. A. Raynaud, D. A. Koss, and A. T. Motta, "Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet", Journal of nuclear materials, 420(1-3), pp. 69-82 (2012). 

  90. S. K. Yagnik, R. C. Kuo, Y. R. Rashid, A. J. Machiels, and R. L. Yang, "Effect of Hydrides on the Mechanical Properties of Zircaloy-4", Proceedings of the 2004 International meeting on LWR fuel performance, pp. 191-199 (2004). 

  91. L. A. Simpson and C. K. Chow, "Effect of Metallurgical Variables and Temperature on the Fracture Toughness of Zirconium Alloy Pressure Tube", ASTM special technical publication, 939, pp. 579-596 (1987). 

  92. P. H. Davies and C. P. Stearns, "Fracture toughness testing of Zircaloy-2 pressure tube material with radial hydrides using direct-current potential drop", ASTM special technical publication, 905, pp. 379-400 (1986). 

  93. U.S. Nuclear Regulatory Commission (NRC), "Standard Review Plan for Dry Cask Storage Systems", Nuclear Regulatory Commission Report, NUREG-1536 (1997). 

  94. US NRC Spent Fuel Project Office, "Interim Staff Guidance-11, Revision 2" (2002). 

  95. H. G. Kim, Y. H. Jeong, and K. T. Kim, "The Effects of Creep and Hydride on Spent Fuel Integrity during Interim Dry Storage", Nuclear Engineering and Technology, 42(3), pp. 249-258 (2010). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로