$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

컴퓨터 단층영상에서 사이노그램 정규화를 이용한 금속 영상왜곡 저감 방법의 이론적 고찰

Theoretical Investigation of Metal Artifact Reduction Based on Sinogram Normalization in Computed Tomography

초록

금속 인공물을 포함한 인체 단층영상의 경우 금속 영상왜곡으로 인한 화질의 저하가 매우 심각하다. 금속 영상왜곡 저감을 위한 많은 방법 중 사이노그램 정규화를 통해 평탄한 사이노그램을 제공하여 금속 궤적을 쉽게 찾고, 단순 선형 보간으로 금속물을 대체하는 두께 및 배경 정규화 방법이 최근 소개되었다. 본 연구에서는 두 방법의 이론적 배경을 개발하였으며, 시뮬레이션을 통해 금속 인공 물질의 크기 및 개수에 따른 두 방법의 보정 결과를 비교하였다. 개발한 이론에 의하면 배경 정규화 방법이 두께 정규화 방법에 비해 피검사체 배경 구성 물질의 개수 및 종류에 상관없이 거의 평탄한 사이노그램을 제공하였으며, 시뮬레이션을 통해 이를 증명하였다. 금속 인공 물질의 다양한 크기 및 개수에 대한 두 방법의 보정 결과 역시 배경 정규화 방법이 두께 정규화 방법에 비해 훨씬 나은 보정 결과를 보여 주었다. 배경 정규화 방법은 영상분할 과정을 요구하는데 본 연구에서는 이 과정을 생략하더라도 비록 영상왜곡 잔상이 미약하게 나타나긴 하지만, 두께 정규화 방법에 비해 훨씬 나은 보정 결과를 제공함을 확인하였다. 영상분할 과정을 생략한 배경 정규화 방법은 매우 간단하며 단순 선형 보간으로도 금속 궤적에 의해 손실된 데이터의 기술이 충분하고, 또한 사용자의 개입이 없는 알고리즘화가 가능하기 때문에 기존 컴퓨터단층영상 시스템에 쉽게 탑재되어 활용될 수 있을 것으로 기대된다.

Abstract

Image quality of computed tomography (CT) is very vulnerable to metal artifacts. Recently, the thickness and background normalization techniques have been introduced. Since they provide flat sinograms, it is easy to determine metal traces and a simple linear interpolation would be enough to describe the missing data in sinograms. In this study, we have developed a theory describing two normalization methods and compared two methods with respect to various sizes and numbers of metal inserts by using simple numerical simulations. The developed theory showed that the background normalization provide flatter sinograms than the thickness normalization, which was validated with the simulation results. Numerical simulation results with respect to various sizes and numbers of metal inserts showed that the background normalization was better than the thickness normalization for metal artifact corrections. Although the residual artifacts still existed, we have showed that the background normalization without the segmentation procedure was better than the thickness normalization for metal artifact corrections. Since the background normalization without the segmentation procedure is simple and it does not require any users' intervention, it can be readily installed in conventional CT systems.

참고문헌 (17)

  1. Parker RP, Hobday PA, Cassell KJ: The direct use of CT numbers in radiotherapy dosage calculations for inhomogeneous media. Phys Med Biol 24(4):802-809 (1979) 
  2. Guerrero ME, Jacobs R, Loubele M, et al: State-ofthe-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Invest 10(1):1-7 (2006) 
  3. Cho MK, Kim HK, Youn H, Kim SS: A feasibility study of digital tomosynthesis for volumetric dental imaging. J Instrum 7(3):P03007 (2012) 
  4. Glover GH, Pelc NJ: An algorithm for the reduction of metal clip artifacts in CT reconstructions. Med Phys 8(6):799-807 (1981) 
  5. Kalender WA, Hebel R, Ebersberger J: Reduction of CT artifacts caused by metallic implants. Radiology 164(2):576-577 (1987) 
  6. Wang G, Snyder DL, O'Sullivan JA, et al: Iterative deblurring for CT metal artifact reduction. IEEE Trans Med Imaging 15(5):657-664 (1996) 
  7. De Man B, Nuyts J, Dupont P, et al: An iterative maximum-likelihood polychromatic algorithm for CT. IEEE Trans Med Imaging 20(10):999-1008 (2001) 
  8. KachelrieB M, Watzke O, Kalender WA: Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28(4):475-490 (2001) 
  9. Nuyts J, De Man B, Fessler JA, et al: Modelling the physics in the iterative reconstruction for transmission computed tomography. Phys Med Biol 58(12):R63-R96 (2013) 
  10. Park JC, Song B, Kim JS, et al: Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT. Med Phys 39:1207-1217 (2012) 
  11. Choi J, Kim KS, Kim MW, et al: Sparsity driven metal part reconstruction for artifact removal in dental CT. J X-ray Sci Tech 19(4):457-475 (2011) 
  12. Muller J, Buzug TM: Spurious structures created by interpolation-based CT metal artifact reduction. Proc SPIE 7258:72581Y(8pp) (2009) 
  13. Muller J, Buzug TM: Intersection Line Length Normalization in CT Projection Data. Bildverarbeitung fur die Medizin, Berlin (2008) pp. 77-81 
  14. Meyer E, Raupach R, Lell M, Schmidt B, KachelrieB M: Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 37(10):5482-5493 (2010) 
  15. Jain AK: Fundamentals of Digital Image Processing. Prentice-Hall Inc, Englewood Cliffs, NJ (1989), pp. 438-439 
  16. Otsu N: A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62-66 (1979) 
  17. Sezgin M, Sankur B: Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146-165 (2004) 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일