$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

항균 코팅제
Antimicrobial Coating Agent 원문보기

한국유화학회지 = Journal of oil & applied science, v.30 no.1, 2013년, pp.96 - 115  

고종성 (한국과학기술정보연구원)

초록
AI-Helper 아이콘AI-Helper

본 연구는 항균성 코팅제의 개념과 동향파악으로 항균성 코팅제의 연구개발의 방향을 설정하는데 도움을 주기 위한 것이다. 항균제는 미생물을 제거하거나 성장을 저지하는데 사용되는 화합물이며 항균 코팅제에 함유되는 항균제용 재료는 무기물, 금속, 저분자 유기물, 천연유기물, 고분자가 있다. 항균코팅제는 생활용품, 병원용품, 산업용품, 전자제품, 의류, 건축 내장재 등의 표면의 항균성 부여에 쓰인다. 기존 항생제는 세균의 세포벽을 손상하지 않고 미생물을 침투하나 항균성 고분자세포막을 파괴하므로 항생제의 내성을 방지할 수 있다. 대부분의 고분자 항균제는 양이온 고분자에 초점을 맞추고 있다. 항균제의 분자설계와 코팅제 배합의 합리화로 항균제의 선택성, 내구성, 독성 문제가 개선될 것이다.

Abstract AI-Helper 아이콘AI-Helper

This article describes the concept and the trend of antimicrobial coating agents, which will help to establish the direction of the research and development on antimicrobial coating agent. Antimicrobial agents are compounds that inhibit or kill microorganisms. They are classified into inorganic, met...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
바이오필름의 형성을 사전에 방지하는 것이 다른 어떤 치료보다 중요한 이유는 무엇인가? 미생물은 자연환경이나 산업시설의 불활성표면 또는 생체표면과 같은 기질에 부착하여 세포외 고분자물질(세포외 DNA, 다당류, 단백질)을 분비, 바이오필름을 형성하며 이들 고분자에 둘러싸여 세균은 역경에 저항한다. 세균의 바이오필름은 중이염, 골수염, 폐렴과 같은 광범한 감염증의 원인이 된다. 세균에 의한 바이오필름 감염은 고착 세균이 숙주 면역반응에 저항할 수 있고 항생제, 살균제, 유체역학적 전단력에 더욱 저항적이어서 문제가 된다. 인공삽입물이나 카테터와 같은 의료 디바이스를 체내 삽입한 환자와 면역계 이상 환자는 바이오 필름 감염을 독자적으로 해결하기 어렵다. 부착 미생물은 미생물 저해제에 저항이 커서 바이오필름을 제거하려면 고농도의 살균제나 항생제를 투여하게 되어 주변에 심각한 손상을 주고 다제 내성균이 출현하게 된다. 따라서 바이오필름의 형성을 사전에 방지하는 것이 어떤 다른 치료보다 중요하다.
미생물의 범위는 어디까지인가? 미생물은 맨 눈으로 관찰할 수 없는 작은 생물로 진균, 원생동물, 세균, 바이러스, 조류를 포함한다. 미생물은 자연환경이나 산업시설의 불활성표면 또는 생체표면과 같은 기질에 부착하여 세포외 고분자물질(세포외 DNA, 다당류, 단백질)을 분비, 바이오필름을 형성하며 이들 고분자에 둘러싸여 세균은 역경에 저항한다.
바이오필름 형성을 방지하는 유효한 방법은 무엇인가? 따라서 바이오필름의 형성을 사전에 방지하는 것이 어떤 다른 치료보다 중요하다. 바이오필름 형성을 방지하는 유효한 방법은 기질 표면에 금속 유도체, 폴리암모늄염, 항생제와 같은 항균제를 고정하거나 도포하는 것이다[1]. 병원성 미생물의 증식을 감소, 지연, 저해하는 물질인 항균제는 저분자 유기물, 고분자 유기물, 금속, 세라믹이 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (81)

  1. K. Glinel et al., Antibacterial surfaces developed from bio-inspired approaches", Acta Biomaterialia 8, 1670 (2012) 

  2. Amanda C. Englera et al., "Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections", Nano Today, 7, 201 (2012) 

  3. Haugh BE et al., "The medicinal chemistry of short lactoferricin-based antibacterial peptides", Curr. Med. Chem., 14, 1 (2007) 

  4. M. Mohorcic et al., Surface with antimicrobial activity obtained through silane coating with covalently bound polymyxin B, J. Mater. Sci. Mater. Med., 21, 2775 (2010) 

  5. Glinel K et al., Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug. Chem., 20, 71 (2009). 

  6. Fabiola Costa et al., Covalent immobilization of antimicrobial peptides(AMPs) onto biomaterial surfaces Acta Biomaterialia, 7, 1431 (2011) 

  7. Yuan S et al. Lysosymecoupled poly (ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir, 27, 2761 (2011) 

  8. Tasso M et al., Covalent immobilization of subtilisin A onto thin films of maleic anhydride copolymers. Macromol .Biosci., 9, 922 (2009) 

  9. Cordeiro AL et al., Immobilized enzymes affect biofilm formation. Biotechnol. Lett., 33, 1897 (2011) 

  10. Tasso M et al., Antifouling potential of Subtilisin A immobilized onto of maleic anhydride copolymer thin films. Biofouling, 25, 505 (2009) 

  11. Alexandra Munoz-Bonilla et al., Polymeric materials with antimicrobial activity, Progress in Polymer Science, 37, 281 (2012) 

  12. Limei Chen et al., Chemical assembly of silver nanoparticles on stainless steel for antimicrobial applications, Surface & Coatings Technology, 204, 3871 (2010) 

  13. Xingjie Zan et al., Polyelectrolyte multilayer films containing silver as antibacterial coatings, Thin Solid Films, 518, 5478 (2010) 

  14. Roberto Guerra et al., Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolites, Microporous and Mesoporous Materials, 147, 267 (2012) 

  15. Wouter et al., Novel Antimicrobial Coatings and Surfaces, Eindhoven University of Technology, 1 (2006) 

  16. Tiller JC et al., Designing surfaces that kill bacteria on contact. Proc. Nat.l Acad. Sci. USA, 98, 5981 (2001) 

  17. Tiller JC et al., Polymer surfaces derivatized with poly(vinyl- Nhexylpyridinium) kill airborne and waterborne bacteria. Biotechnol. Bioeng., 79, 465 (2002) 

  18. Sellenet PH et al., Synergistic activity of hydrophilic modification in antibiotic polymers, Biomacromolecules, 8, 19 (2007) 

  19. Allison BC et al., Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules, 8, 2995 (2007) 

  20. Sambhy V et al, Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew. Chem. Int. Ed., 47, 1250 (2008) 

  21. Sharma S, Chauhan G, Gupta R, Ahn JH. Tuning anti-microbial activity of poly(4-vinyl 2-hydroxyethyl pyridinium) chloride by anion exchange reactions. J. Mater. Sci. Mater. Med., 2, 717 (2010) 

  22. Timofeeva LM et al., Secondary and tertiary polydiallylammonium salts: novel polymers with high antimicrobial activity. Biomacromolecules, 10, 2976 (2009) 

  23. Sauvet G et al., Biocidal polymers active by contact,. V. Synthesis of polysiloxanes with biocidal activity. J Appl .Polym. Sci., 75, 1005 (2000). 

  24. Abel T et al, Preparation and investigation of antibacterial carbohydratebased surfaces. Carbohydr. Res., 337, 2495 (2002) 

  25. Dizman B et al., Synthesis and antimicrobial activities of new watersoluble bis-quaternary ammonium methacrylate polymers. J. Appl. Polym. Sci., 94, 635 (2004) 

  26. Lu G et al., Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React. Funct. Polym., 67, 355 (2007) 

  27. Zhang Z et al., The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials, 29, 4719 (2008) 

  28. Zhang Z et al., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J. Phys. Chem. B, 110, 10799 (2006) 

  29. Cheng G et al., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 28, 4192 (2007) 

  30. Zhang Z et al., Dual-functional biomimetic materials: nonfouling poly (carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 27, 3311 (2006) 

  31. Venkataraman S et al., Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials, 31, 1751 (2010) 

  32. Lu L et al., Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte. Langmuir, 21, 10154 (2005) 

  33. Chemburu S et al., Light-induced biocidal action of conjugated polyelectrolytes supported on colloids. Langmuir, 24, 11053 (2008) 

  34. Corbitt TS et al., Conjugated polyelectrolyte capsules: light-activated antimicrobial micro roach motels. ACS Appl. Mater. Interfaces, 1, 48 (2009) 

  35. Wang Y et al., Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes. Langmuir, 26, 12509 (2010) 

  36. Mizerska U et al., Polysiloxane cationic biocides with imidazolium salt (ImS) groups, synthesis and antibacterial properties. Eur. Polym. J., 45, 779 (2009) 

  37. Hoogenboom R. Poly(2-oxazoline)s: a polymer class with numerous potential applications. Ang. Chem. Int. Ed., 48, 7978 (2009) 

  38. Makino A et al., Chemistry of 2-oxazolines: a crossing of cationic ring-opening polymerization and enzymatic ring-opening polyaddition. J. Polym. Sci. Part A Polym. Chem., 48, 1251 (2010) 

  39. Adams N et al., Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug. Deliv. Rev., 59, 1504 (2007) 

  40. Waschinski CJ et al., Poly(oxazoline)s with telechelic antimicrobial functions, Biomacromolecules, 6, 235 (2005) 

  41. Waschinski CJ et al., Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol. Biosci., 5, 149 (2005) 

  42. Waschinski CJ et al., Insights in the antibacterial act.ion of poly (methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules, 9, 1764 (2008) 

  43. Harney MB et al., Surface selfconcentrating amphiphilic quaternary ammonium biocides as coating additives. ACS Appl. Mater. Interfaces, 1, 39 (2009) 

  44. Cakmak I et al., Synthesis and characterization of novel antimicrobial cationic polyelectrolytes. Eur. Polym. J, 40, 2373 (2004) 

  45. Zhang Y et al., Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer, 40, 6189 (1999) 

  46. Feiertag P et al., Structural characterization of biocidal oligoguanidines. Macromol. Rapid Commun., 24, 567 (2003) 

  47. Albert M et al., Structure-ctivity relationships of oligoguanidines - influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromolecules, 4, 1811 (2003) 

  48. Marr AK et al., Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol., 6, 468 (2006) 

  49. Halevy R et al., Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides, 24, 1753 (2003) 

  50. Tamaki M et al., Syntheses of lowhemolytic antimicrobial gratisin peptides. Bioorg. Med. Chem. Lett., 19, 2856 (2009) 

  51. Epand RF et al., Antimicrobial 14-helical peptides: potent bilayer disrupting agents. Biochemistry(Mosc), 43, 9527 (2004) 

  52. Porter EA et al., Nonhaemolytic -amino-acid oligomers. Nature, 404, 565 (2000) 

  53. Schmitt MA et al., Unexpected relationships between structure and function in $\alpha\beta$ -peptides, antimicrobial foldamers with heterogeneous backbones. J. Am. Chem. Soc., 126, 6848 (2004) 

  54. Schmitt MA et al., Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of $\alpha$ / $\beta$ -peptides. J. Am. Chem. Soc., 129, 417 (2006) 

  55. Ilker MF et al., Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J. Am. Chem. Soc., 126, 15870 (2004) 

  56. Gabriel GJ et al., Synthetic mimic of antimicrobial peptide with nonmembranedisrupting antibacterial properties. Biomacromolecules, 9, 2980 (2008) 

  57. Kugel AJ et al., Combinatorial materials research applied to the development of new surface coatings XII: novel, environmentally friendly antimicrobial coatings derived from biocide-functional acrylic polyols and isocyanates. J. Coat. Technol. Res., 6, 107 (2009) 

  58. Sun Y et al., Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J. Polym. Sci. Part A Polym. Chem., 39, 3073 (2001) 

  59. Kenawy ER et al., Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl m e t h a c r y l a t e - c o - 2 - h y d r o x y e t h y l methacrylate) derivatives with quaternary ammonium and phosphonium salts. J. Polym. Sci. Part A Polym. Chem., 40, 2384 (2002) 

  60. Kenawy ER et al., Biologically active polymers, 6a: synthesis and antimicrobial activity of some linear copolymers with quaternary ammonium and phosphonium groups. Macromol. Biosci., 3, 107 (2003) 

  61. Kenawy E-R et al., Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. React. Funct. Polym., 66, 419 (2006) 

  62. Mahmoud Y et al., Anti-Candida and mode of action of two newly synthesized polymers: a modified poly (methylmethacrylate-co-vinylbenzoylchlorid e) and a modified linear poly (chloroethylvinylether-co-vinylbenzoylchlori de) with special reference to Candida albicans and Candida tropicalis. Mycopathologia, 157, 145 (2004) 

  63. Kenawy ER et al., Biologically active polymers. IV. Synthesis and antimicrobial activity of tartaric acid polyamides. J. Appl. Polym. Sci., 102, 4780 (2006) 

  64. Park ES et al., Antimicrobial activity of phenol and benzoic acid derivatives. Int. Biodeterior. Biodegrad., 47, 209 (2001) 

  65. Kenawy ER et al., Antimicrobial properties of modified and electrospun poly(vinyl phenol). Macromol. Biosci., 2, 261 (2002) 

  66. Subramanyam E et al., Synthesis, characterization, and evaluation of antifouling polymers of 4-acryloyloxybenzaldehyde with methyl methacrylate. J. Appl. Polym. Sci., 112, 2741 (2009) 

  67. Al-Muaikel NS et al., Synthesis and characterization of novel organotin monomers and copolymers and their antibacterial activity. J. Appl. Polym. Sci.., 77, 740 (2000) 

  68. Westman E-H et al., Assessment of antibacterial properties of polyvinylamine (PVAm) with different charge densities and hydrophobic modifications. Biomacromolecules, 10, 1478 (2009) 

  69. M.B. Yagci et al., Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds, Progress in Organic Coatings, 72, 343 (2011) 

  70. De Queiroz AAA et al., Physicochemical and antimicrobial properties of boron-complexed polyglycerol-hitosan dendrimers. J Biomater. Sci .Polym. Ed., 17, 689 (2006) 

  71. Partha Majumdar et al., Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS, Polymer, 50, 1124 (2009) 

  72. Klasimir Vasilev et al., Antibacterial Surfaces for biomedical devices, Expert Rvi. Med. Devices., 6, 553 (2009) 

  73. J.M. Goddard et al., Polymer surface modification for the attachment of bioactive compounds, Prog. Polym. Sci., 32, 698 (2007) 

  74. Alex Kugel et al., Antimicrobial coatings produced by "tethering" biocides to the coating matrix: A comprehensive review, Progress in Organic Coatings, 72, 222 (2011) 

  75. Laura Sisti et al., Antibacterial coatings on poly(fluoroethylenepropylene) films via grafting of 3-hexadecyl-1-vinylimidazolium bromide, Progress in Organic Coatings, 73, 257 (2012) 

  76. Paul J. Nowatzki et al., Salicylic acidreleasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings, Acta Biomaterialia, 8, 1869 (2012) 

  77. Kugel A et al., Antimicrobial polysiloxane polymers and coatings containing pendant levofloxacin. Polym. Chem., 1, 442 (2010) 

  78. Hang Liu et al, Antimicrobial Properties and Release Profile of Ampicillin from Electrospun Poly( $\varepsilon$ -caprolactone) Nanofiber Yarns", Journal of Engineered Fibers and Fabrics, 5, 10 (2010) 

  79. T.V.P. Doan et al., Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery, International Journal of Pharmaceutics, 414 112 (2011) 

  80. Guyomard A et al., Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv. Funct Mater., 18, 758 (2008) 

  81. Manefield M et al., Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein, Microbiology, 145, 283 (1999) 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로