$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

계절별 저수지 유입량의 확률예측

Probabilistic Forecasting of Seasonal Inflow to Reservoir

Abstract

Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

저자의 다른 논문

참고문헌 (20)

  1. Kim, H. S., Park, J. U., Kim, J. H., 1998, Hurst Phenomenon in Hydrologic Time Series, Journal of The Korean Society of Civil Engineers, 18(II-6), pp. 571-582. 
  2. Allison, P.D., 1999, Logistic Regression Using the SAS System: Theory and Application, SAS Institute Inc. 
  3. Awadallah, A.G., Rousselle, J., 2000, Improving Forecasts of Nile Flood Using SST Inputs in TFN Model, Journal of Hydrologic Engineering, 5(4), pp. 371-379. 
  4. Bender, M., Simonovic, S., 1994, Time-Series Modeling for Long-Range Streamflow Forecasting, Journal of Water Resources Planning and Management, 120(6), pp. 857-870. 
  5. Beran, J., 1994, Statistics for Long-memory Processes, Chapman and Hall. 
  6. Davis, J.C., 1986, Statistics and Data Analysis in Geology, John Wiley & Sons. 
  7. Efron, B., Tibshirani, R.J., 1993, An Introduction to the Bootstrap, Chapman & Hall. 
  8. Garen, D.C., 1993, Improved Techniques in Regressionbased Streamflow Volume Forecasting, Journal of Water Resources Planning and Management, 118(6), pp. 654-670. 
  9. Montanari, A., Rosso, R., Taqqu, M.S., 1997, Fractionally Differenced ARIMA Models Applied to Hydrologic Time Series: Identification, Estimation, and Simulation, Water Resources Research, 33(5), pp. 1035-1044. 
  10. Panofsky, H.A., Brier, G.W., 1968, Some Applications of Statistics to Meteorology, The Pennsylvania State University. 
  11. Piechota, T.C., Chiew, F.H.S., Dracup, J.A., McMahon, T.A., 1998, Seasonal Streamflow Forecasting in Eastern Australia and the El Nino-Southern Oscillation, Water Resources Research, 34(11), pp. 3035-3044. 
  12. Sharma, A., 2000a, Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved Water Supply Management: Part 1 - A Strategy for System Predictor Identification, Journal of Hydrology, 239, pp. 232-239. 
  13. Sharma, A., 2000b, Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved Water Supply Management: Part 3 - A Nonparametric Probabilistic Forecast Model, Journal of Hydrology, 239, pp. 249-258. 
  14. Sharma, A. Luk, K.C., Cordery, I., Lall, U., 2000, Seasonal to Interannual Rainfall Probabilistic Forecasts for Improved Water Supply Management: Part 2 - Predictor Identification of Quarterly Rainfall Using Ocean-Atmosphere Information, Journal of Hydrology, 239, pp. 232-239. 
  15. Simpson, H.J., Cane, M.A., Herczeg, A.L., Zebiak, S.E., Simpson, J.H., 1993, Annual River Discharge in Southeastern Australia Related to El Nino-Southern Oscillation Forecasts of Sea Surface Temperatures, Water Resources Research, 34(11), pp. 3035-3044. 
  16. Strang, G., 1986, Introduction to Applied Mathematics, Wellesley-Cambridge Press. 
  17. Teverovsky, V., Taqqu, M.S., 1997, Testing for Longrange Dependence in the Presence of Shifting Means or a Slowly Declining Trend Using a Variance Type Estimator, Journal of Time Series Analysis, 18(3), pp. 279-304. 
  18. Wilks, D.S., 1995, Statistical Methods in the Atmospheric Sciences: An Introduction, Academic Press. 
  19. Dalezios, N.R., Tyraskis, P.A., 1989, Maximum Entropy Spectra for Regional Precipitation Analysis and Forecasting, Journal of Hydrology, 109, pp. 25-42. 
  20. Pelletier, J.D., Turcotte, D.L., 1997, Long-range Persistence in Climatological and Hydrological Time Series: Analysis, Modeling and Application to Drought Hazard Assessment, Journal of Hydrology, 203, pp. 198-208. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일