• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Control of Airborne Organic Pollutants Using Plug-Flow Reactor Coated With Carbon Material-Titania Mixtures Under Visible-Light Irradiation


Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of $TiO_2$ nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, $TiO_2$-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the $TiO_2$-GO composites. The average efficiencies of the $TiO_2$-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified $TiO_2$ powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified $TiO_2$ powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a $TiO_2$-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.

참고문헌 (26)

  1. Ao, C. H., Lee, S. C., 2003, Enhancement effect of $TiO_{2}$ immobilized on activated carbon filter for the photoremoval of pollutants at typical indoor air level. Appl Catal B, 44: 191-205. 
  2. Chen, M. L, Oh, W. C., 2010, The improved phocatalytic properties of methylene blue for V2O3/CNT/$TiO_{2}$ composite under visible light. Int J Photoenergy, 264831. 
  3. de. Blas, M., Navazo, M., Alonso, L., et al., 2012, Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Sci Total Environ, 426: 327-335. 
  4. Demeestere, K., Dewulf, J., Van, Langenhove H., 2007, Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of the art. Crit Rev Environ Sci Technol, 37: 489-538. 
  5. Eda, G., Fanchini, G., Chhowalla, M., 2008, Large-area ultrathin films of reduced grapheme oxide as a transparent and flexible electronic materials. Nat Nanotechnol, 3: 270-274. 
  6. Fujishima, A., Zhang, X., Tryk, D. A., 2007, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrogen Energy, 32: 2664-2672. 
  7. Henderson, M. A., 2011, A surface science perspective on $TiO_{2}$ photocatalysis. Surf Sci Rep, 66: 185-197. 
  8. Jiang, G., Lin, Z., Chen, C., et al., 2011, $TiO_{2}$ nanoparticles assembled on grapheme oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, 49: 2693-2701. 
  9. Jo, W. K., Kim, J. T., 2009, Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J Hazard Mater, 164: 360-366. 
  10. Jo, W. K., Shin, S. H., Hwang, E. S., 2011, Removal of dimethyl sulfide utilizing activated carbon fibersupported photocatalyst in continuous-flow system. J Hazard Mater, 191: 234-239. 
  11. Kamat, P. V., 2010, Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett, 1: 520-527. 
  12. Kontos, A. G., Katsanaki, A., Likodimos, V., et al., 2012, Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films. Chem Eng J, 179: 151-157. 
  13. Leary, R., Westwood, A., 2011, Carbonaceous nanomaterials for the enhancement of $TiO_{2}$ Photocatalysis, Carbon, 49: 741-772. 
  14. Lightcap, I. V., Kosel, T. H., Kamat, P. V., 2010, Anchoring semiconductor and metal nanoparticles on a twodimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett, 10: 577-583. 
  15. Nguyen-Phan, T. D., Pham, V. H., Shin, E. W., et al., 2011, The role of grapheme oxide content on the adsorption enhanced photocatalysis of titanium dioxide/grapheme oxide composites. Chem Eng J, 170: 226-232. 
  16. Ochiai, T., Fujishima, A., 2012, Photoelectrochemical properties of $TiO_{2}$ photocatalyst and its applications for environmental purification. J Photochem Photobiol C, 13: 247-262. 
  17. Paola, A. D., Garcia-Lopez, E., Marci, G., et al., 2012, A survey of photocatalytic materials for environmental remediation. J Hazard Mater, 211-12: 3-9. 
  18. Pastrana-Martinez, L. M., Morales-Torres, S., Likodimos, V., et al., 2012. Advanced nanostructured photocatalysts based on reduced grapheme oxide-$TiO_{2}$ mixtures for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B, 123-24: 241-256. 
  19. Paz, Y., 2010, Application of $TiO_{2}$ photocatalysis for air treatment: patents' overview. Appl Catal B, 99: 448-460. 
  20. Pengyi, Z., Fuyan, L., Gang, Y., et al., 2003, A comparative study on decomposition of gaseous toluene by O3/UV, $TiO_{2}$/UV and O3/$TiO_{2}$/UV. J Photochem Photobiol A, 156: 189-194. 
  21. Sakthive, S., Kisch, H., 2003, Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed, 42: 4908-4911. 
  22. Schlink, U., Thiem, A., Kohajda, T., et al., 2010, Quantile regression of indoor air concentrations of volatile organic compounds (VOC). Sci Total Environ, 408: 3840-3851. 
  23. Shan, A. Y., Ghazi, T. I. M., Rashid, S. A., 2010, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A, 389: 1-. 
  24. Stankovich, S., Dikin, D. A., Dormmett, G. H. B., et al., 2006, Graphene-based composite materials. Nature, 442: 282-286. 
  25. USEPA(United States Environmental Protection Agency), 2008, Care for your air: a guide to indoor air quality. EPA 402/F-08/008. Washington DC, USA. 
  26. Zhang, H., Lv, X., Li, Y., et al., 2010, P25-graphene mixtures as a high performance photocatalyst. ACS Nano, 4: 380-386. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일