$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Demonstration of a Modular Electrostatic Precipitator to Control Particulate Emissions from a Small Municipal Waste Incinerator 원문보기

Journal of electrical engineering & technology, v.9 no.1, 2014년, pp.239 - 246  

Intra, Panich (Research Unit of Electrostatic Applications in Energy and Environment, College of Integrated Science and Technology, Rajamangala University of Technology Lanna) ,  Yawootti, Artit (Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University) ,  Tippayawong, Nakorn (Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University)

Abstract AI-Helper 아이콘AI-Helper

Incineration is conceptually sound as a waste treatment technology. There is, however, concern over its emissions when it is improperly designed and operated. An electrostatic precipitator is one of the most commonly used devices to control particulate emissions from boilers, incinerators and some o...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • A computational model was also developed to investigate the distribution of electric potential and flow velocity inside the ESP to give a better understanding of the ESP operation. Numerical simulation was performed to obtain the solutions to the model.
  • A high voltage power supply was used to generate high electric field strength between collecting plates and discharge electrodes. In this study, a high voltage, pulsed, positive power supply was used to generate varying impulse peak voltages and impulse frequencies to the corona discharge electrodes. The pulsed power supply had many advantages when compared with the conventional DC high voltage, including: higher peak voltage without excessive breakdown, and therefore better particle charging; control of the corona current independently of precipitator voltage by varying pulse frequency and pulse amplitude, which gives a controllable particle charging rate; a higher overall power input and improved precipitator efficiency can be achieved, and the particle migration velocity is higher because of the stronger average electric field that can be sustained under pulsed conditions [15].
  • A small and simple ESP for the removal of particulate matter from the exhaust gases of a small incinerator was developed and investigated. Its electrical characteristics and collection efficiency were analytically and experimentally evaluated. For particles larger than 400 nm, 100 % capture efficiency was predicted.
  • A computational model was also developed to investigate the distribution of electric potential and flow velocity inside the ESP to give a better understanding of the ESP operation. Numerical simulation was performed to obtain the solutions to the model. The commercial computational fluid dynamic software package, CFDRCTM was used.
  • The present study is among the first to tackle this shortcoming, focusing on design, construction, and installation of a simple, compact and cost effective ESP with DC pulsed power supply capable of removing particulate matter from the stack gases of a small municipal incinerator. The ESP was modeled theoretically and tested experimentally.

대상 데이터

  • Ten collection plates are made of steel, 1 m high × 1 m wide × 3 mm thick.
  • The overall dimension was 1 m×1 m×1 m. The discharge electrodes are made of stainless steel rods, 2 mm in diameter and 1.1 m in length. Ten collection plates are made of steel, 1 m high × 1 m wide × 3 mm thick.

이론/모형

  • Measurements of the particle concentrations upstream and downstream of the ESP were performed by the gravimetric method. For particulate sampling, an isokinetic tube was used to measure the concentration of the particulates.
  • 8. The collection efficiency of the ESP was calculated by the Deutsch-Anderson equation for wire-to-plate type collectors (Eq. 6). The data presented covers particulate matter in the size range between 0.
  • The commercial computational fluid dynamic software package, CFDRCTM was used. This software is based on the finite volume method. Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (16)

  1. H.J. White, Industrial Electrostatic Precipitation, Addison-Wesley, Reading, Massachusetts, 1963. 

  2. K.R. Parker, Applied Electrostatic Precipitation, Blackie Academic & Professional, New York, 1997. 

  3. A. Mizuno, "Electrostatic precipitation," IEEE Transaction on Dielectrics and Electrical Insulation, Vol. 7, pp. 615-624, 2000. 

  4. A. Jaworek, A. Krupa and T. Czech, "Modern electrostatic devices and methods for exhaust gas cleaning: A brief review", Journal of Electrostatics, Vol. 65, pp. 133-155, 2007. 

  5. S.C. Saxena, R.F. Henry and W.F. Podolski, "Particulate removal from high-temperature, highpressure combustion gases", Progress in Energy and Combustion Science, Vol. 11, pp. 193-251, , 1985. 

  6. I. Obernberger, "Decentralized biomass combustion: state of the art and future development", Biomass and Bioenergy, Vol. 14, pp. 33-56, 1998. 

  7. M. Strand, J. Pagels, A. Szpila, A. Gudmundsson, E. Swietlicki, M. Bohgard and M. Sanati,. "Fly ash penetration through electrostatic precipitator and flue gas condenser in a 6 MW biomass fired boiler", Energy and Fuels, Vol. 16, pp. 1499-1506, 2002. 

  8. T. Lind, J. Hokkinen and J.K. Jokiniemi, "Electrostatic precipitator collection efficiency and trace element emissions from co-combustion of biomass and recovered fuel in fluidized-bed combustion", Environmental Science and Technology, Vol. 37, pp. 2842-2846, 2003. 

  9. S.V.B.V. Paasen, L.P.L.M. Rabou and R. Bar, "Tar removal with a wet electrostatic precipitator; A parametric study", 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 10-14 May, 2004. 

  10. A. Messerer, A. Schmatloch, U. Poschl and R. Neissner, "Combined particle emission reduction and heat recovery from combustion exhaust - a novel approach for small wood-fired appliances", Biomass and Bioenergy, Vol. 31, pp. 512-521, 2007. 

  11. P. Intra, P. Limueadphai and N. Tippayawong, "Particulate emission reduction from biomass burning in small combustion systems with a multiple tubular electrostatic precipitator", Particulate Science and Technology, Vol. 28, pp. 547-565, 2010. 

  12. C. Ruttanachot, Y. Tirawanichakul and P. Tekasakul, "Application of electrostatic precipitator in collection of smoke aerosol particles from wood combustion", Aerosol and Air Quality Research, Vol. 11, pp. 90-98, 2011. 

  13. A. Zukeran, P.C. Looy, A. Chakrabari, A. A. Berezin, S. Jayaram, J.D. Cross, T. Ito, and J.S. Chang, "Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating mode", IEEE Transactions on Industry Applications, Vol. 35 (5), 1184-1191, 1999. 

  14. W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, New York, 1999. 

  15. H.S.B. Elayyan, A. Bouziane and R.T. Waters, "Theoretical and experimental investigation of a pulsed ESP", Journal of Electrostatics, Vol. 56, pp. 219-234, 2002. 

  16. P. Intra and N. Tippayawong, "Development of a fast-response, high-resolution electrical mobility spectrometer", Korean Journal of Chemical Engineering, Vol. 28, pp. 279-286, 2011. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로