• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

GMAW 품질분석을 위한 신호처리 방법에 관한 연구

A study on the welding current and voltage signal processing method for the quality evaluation of robotic GMAW


GMAW(Gas metal arc welding) 방법은 높은 용착률과 낮은 비용으로 인해 제조 산업분야에서 폭넓게 사용되고 있다. 이 용접방법은 제조 산업분야에서 높은 생산력을 유지하는데 바탕이 되고, 자동화 설비 또는 로봇을 이용한 용접에 적합하다. 용접전압과 전류는 용접비드에 많은 영향을 미친다. 그럼에도 불구하고 용접 전압과 전류는 용접 조건과 사용자 환경에 따라 그 변화가 심하고 예측이 불가능하다. 이 값들을 직접 용접 상태 검출에 사용할 수 없기 때문에 적절한 데이터 분석 기법이 사용되어야 한다. 본 논문에서는 용접 중에 측정된 전압과 전류 데이터에 대하여 이동평균필터를 적용하였다. 그 결과 정상용접 상태의 전압 및 전류의 신호특성과 비정상용접 상태의 전압 및 전류 신호의 특성을 구분할 수 있었으며 이를 통해 용접 상태 검출이 가능하게 되었다.


Gas metal arc welding (GMAW) is currently the most widely used arc welding processes in the industry because of its high metal deposition rate, flexibility and low cost. It is attractive for high-productivity manufacturing applications and is well suited to automatic or robotic welding. Welding voltage and current have a significant impact on the weld bead. However, welding voltage and current are changed variously according to welding condition and user environment, and prediction is impossible. To determine the welding conditions, the welding current and voltage are applied to the appropriate data analysis techniques. In this paper, we used the moving average filter to the welding voltage and current data, and normal and abnormal welding waves were distinguished.

저자의 다른 논문

참고문헌 (17)

  1. C. S. Wu, J. Q. Gao, J. K. Hu, "Real-time sensing and monitoring in robotic gas metal arc welding", Meas. Sci. Technol. Vol. 18, pp. 303-310, 2007. 
  2. E. J. Soderstrom, P. F. Mendez, "Metal transfer during GMAW with thin electrodes and Ar-$CO_2$ Shielding Gas Mixtures", Weld. Research Vol. 87, pp. 124s-133s, 2008 
  3. A. R. D. Tipi, S. K. H. Sani, N. P.ariz, "Frequency control of the drop detachment in the automatic GMAW process", Journal of Materials Processing Technology Vol. 216, pp. 248-259, 2015. 
  4. Z.Z. Wang, "Monitoring of GMAW Weld Pool From the Reflected Laser Lines for Real-Time Control" IEEE Transactions on Industrial Informatics, Vol. 10, Issue 4, pp.2073-2083, 2014. 
  5. M. Boselli, V. Colombo, E. Ghedini, P. Sanibondi, "Time-Dependent Modeling of Droplet Detachment in GMAW Including Metal Vapor Diffusion" IEEE Transactions on Plasma Science, Vol. 39, Issue 11, pp. 2896-2897, 2011. 
  6. C. S. Wu, and C. B. Jia, "Statistical characteristic for detecting weld penetration defects in gas-metal arc welding", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 220, No. 5, pp. 793-796, 2006. 
  7. R. Kovacevic, Y. M. Zhang and S. Ruan, "Sensing and control of weld pool geometry for automated GTA welding Trans", ASME-J. Eng. Indust., Vol. 117, pp. 210-22, 1995 
  8. E. H. Cayo, S. C. A. Alfaro, "A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing", Sensors Vol. 9, No. 9, pp. 7150- 7166, 2009. 
  9. S. C. A. Alfaro, E. H. Cayo, "Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment", Sensors Vol. 12, No. 6, pp. 6953-6966, 2012 
  10. Y. Xu G. Fang, N. Lv. S. Chen, JuJia Zou, "Computer vision technology for seam tracking in robotic GTAW and GMAW", Robotics and Computer-Integrated Manufacturing, Vol. 32, pp. 25-36, 2015 
  11. H.C Wikle, S. Kottilingam, R.H Zee, B. A Chin, "Infrared sensing techniques for penetration depth control of the submerged arc welding process", Journal of Materials Processing Technology, Vol. 113, Issues 1-3, pp. 228-233, 15 June 2001. 
  12. M. Mousavi Anzehaee, M. Haeri, "Welding current and arc voltage control in a GMAW process using ARMarkov based MPC", Control Engineering Practice Vol. 19, Issue 12, pp. 1408-1422, 2011. 
  13. Manas Kr. Bera, P. S. Lal Priya, B. Bandyopadhyay and A. K. Paul, "Discrete-time Sliding Mode Control of GMAW Systems using Infrequent Output Measurements", 2013 European Control Conference (ECC) July 17-19, 2013, Zurich, Switzerland. pp. 3736-3741. 
  14. E. Karadeniz, U. Ozsarac, C. Yildiz, "The effect of process parameters on penetration in gas metal arc welding processes", Materials and Design Vol. 28, pp. 649-656, 2007. 
  15. C. S. Wu, J. Q. Gao, X. F. Liu, and Y. H. Zhao, "Vision-based measurement of weld pool geometry in constant-current gas tungsten arc welding", Proceedings of the institution of mechanical engineers, Part B: Journal of Engineering Manufacture, Vol. 217(6), pp. 879-882, 2003. 
  16. D.S. Hwang and M. Gho, "Development and application of realtime weld quality monitoring system", Journal fo KWJS Vol. 30 No. 1, pp. 44-50, 2012. 
  17. Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", California Technical Publishing, 1997, Chapter 15: moving average filters pp. 277-284. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일