$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Aspergillus usamii KCTC 6954에 의한 ginsenoside Rb1로 부터 의약용 소재인 compound K로의 생물학적 전환

Bioconversion of Ginsenoside Rb1 to the Pharmaceutical Ginsenoside Compound K using Aspergillus usamii KCTC 6954

초록

본 연구는 인삼의 주요성분인 ginsenoside Rb1으로부터 보다 높은 생리기능성을 갖는 것으로 알려져 있는 compound K를 생산하기 위하여 Aspergillus usamii KCTC 6954에서 유래된 ${\beta}$-glucosidase를 사용하여 생물전환을 실시하였다. 15일 동안의 배양 중, 효소활 성 측정은 ${\rho}$-nitrophenyl-${\beta}$-glucopyranoside를 기질로 하여 분해 생성되는 ${\rho}$-nitrophenol (${\rho}NP$)을 비색계로 측정함으로써 실시되었다. 그 결과로서, 균주의 성장 속도는 접종 후 6일 후 최대로 나타났으며 이때의 ${\beta}$-glucosidas 활성도는 $175.93{\mu}M\;ml^{-1}min^{-1}$로 나타났다. 또 한 효소 반응의 최적 조건은 pH 6.0 이내에서는 $60^{\circ}C$인 것으로 나타났다. 배양 중 ginsenosides 분석 결과, 배양 9일 후에는 Rb1는 Rd 로 전환되고 15 days 후에는 compound K로 순차적으로 전환되는 것으로 나타났다. 효소반응에 있어서는 Rb1는 1시간 이내에 ginsenoside Rd로 전환되었고 8시간 이후에 최종산물인 compound K가 측정되었다. 본 연구결과로부터 Rb1으로부터 주요 생물학적 전환 경로는 $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$compound K로 나타났으며 이는 차후 Rd나 compound K와 같이 강한 생리기능성을 갖지만 자연에 미 량 존재하는 물질의 대량생산에 응용될 수 있을 것으로 기대된다.

Abstract

${\beta}$-Glucosidase from Aspergillus usamii KCTC 6954 was used to convert ginsenoside Rb1 to compound K, which has a high bio-functional activity. The enzymatic activities during culturing for 15 days were determined using ${\rho}$-nitrophenyl-${\beta}$-glucopyranoside. The growth rate of the strain and the enzymatic activity were maximized after 6 days (IU; $175.93{\mu}M\;ml^{-1}\;min^{-1}$). The activities were maximized at $60^{\circ}C$ in pH 6.0. During culturing, Rb1 was converted to Rd after 9 d and then finally converted to compound K at 15 d. In the enzymatic reaction, Rb1 was converted to the ginsenoside Rd within 1 h of reaction time and compound K could be detected after 8 h. As a result, this study demonstrates that $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$compound K is the main metabolic pathway catalyzed by ${\beta}$-glucosidase and that ${\beta}$-glucosidase is a feasible option for the development of specific bioconversion processes to obtain minor ginsenosides such as Rd and compound K.

이미지/표/수식 (5)

저자의 다른 논문

참고문헌 (28)

  1. Barbagallo RN, Spagna G, Palmeri R, Restuccia C, Giudici P. 2004. Selection, characterization and comparison of $\beta$-glucosidase from mould and yeasts employable for enological applications. Enzyme Microb. Technol. 35: 58-66. 
  2. Chang KH, Jee HS, Lee NK, Park SH, Lee NW, Paik HD. 2009. Optimization of the enzymatic production of 20(S)-ginsenoside Rg3 from white ginseng extract using response surface methodology. New Biotechnol. 26: 181-186. 
  3. Chang KH, Jo MN, Kim KT, Paik HD. 2012. Purification and characterization of a ginsenoside Rb1-hydrolyzing $\beta$-glucosidase from Aspergillus niger KCCM 11239. Int. J. Mol. Sci. 13: 12140-12152. 
  4. Choi JE, Nam KY, Li X, Kim BY, Cho HS, Hwang KB. 2010. Change of chemical components and ginsenoside contents of different root parts of ginsengs with processing method. Korean J. Med. Crop Sci. 18: 118-125. 
  5. Cui CH, Kim SC, Im WT. 2013. Characterization of the ginsenoside-transforming recombinant beta-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides. Appl. Microbiol. Biotechnol. 97: 649-659. 
  6. Fuzzati, N. 2004. Analysis methods of ginsenosides. J. Chromatogr. B 812: 119-133. 
  7. Hongwei L, Xin L, Xiaohui Q, Ying H, Dacheng H, Yu C, et al. 2006. Purification and characterization of novel stable ginsenoside Rb1-hydrolyzing $\beta$-glucosidase from China white jade snail. Process Biochem. 41:1974-1980. 
  8. In JG, Lee BS, Kim EJ, Park MH, Yang DC. 2006. Increase of functional saponin by acid treatment and temperature of red ginseng extract. Korean J. Plant Res. 19: 139-143. 
  9. Kim JW, Doo HS, Kwon TH, Kim YS, Shin DH. 2011. Quality characteristics of Doenjang Meju fermentation with Aspergillus species and Bacillus subtilis during fermentation. Korean J. Food Preserv. 18: 397-406. 
  10. Kim SK, Kwak YS, Kim SW, Hwang SY, Ko YS, Yoo CM. 1998. Improved method for the preparation of crude ginseng saponin. J. Ginseng Res. 22: 155-160. 
  11. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK. 2000. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702-1704. 
  12. Li WK, Gu CG, Zhang HJ, Awang DVC, Fitzloff JF, Fong HHS, et al. 2000. Use of high performance liquid chromatography tandem mass spectrometry to distinguish Panax ginseng C.A Meyer (Asian ginseng) and Panax quinquefolius. L. (America ginseng). Anal. Chem. 72: 5417-5422. 
  13. Lim SI, Cho CW, Choi UK, Kim YC. 2010. Antioxidant activity and ginsenoside pattern of fermented white ginseng. J. Ginseng Res. 34: 168-174. 
  14. Liu L, Gu LJ, Zhang DL, Wang Z, Wang CY, Li Z, et al. 2010. Microbial conversion of rare ginsenoside $R_f$ to 20(S)-protopanaxatriol by Aspergillus niger. Biosci. Biotechnol. Biochem. 74: 96-100. 
  15. Liu L, Zhu XM, Wang QJ, Zhang DL, Fang ZM, Wang CY, et al. 2010. Enzymatic preparation of 20(S, R)-protopanaxadiol by transformation of 20(S, R)-Rg3 from black ginseng. Phytochemistry 71: 1514-1520. 
  16. Lu J, Weerasiri RR, Liu Y, Wang W, Ji S, Lee I. 2013. Enzyme production by the mixed fungal culture with nano-shear pretreated biomass and lignocellulose hydrolysis. Biotechnol. Bioeng. 110: 2123-2130. 
  17. Park D, Bae DW, Jeon JH, Lee J, Oh N, Yang G, et al. 2011. Immunopotentiation and antitumor effects of a ginsenoside $Rg_3$-fortified red ginseng preparation in mice bearing H460 lung cancer cells. Environ. Toxicol. Pharm. 31: 397-405. 
  18. Park HJ, Jung DH, Joo H, Kang NS, Jang SA, Lee JG, et al. 2010. The comparative study of anti-allergic and anti-inflammatory effects by fermented red ginseng and red ginseng. Korean J. Plant Res. 23: 415-422. 
  19. Pyo YH, Lee TC, Lee YC. 2005. Enrichment of bioactive isoflavones in soymilk fermented with $\beta$-glucosidase-producing lactic acid bacteria. Food Res. Int. 38: 551-559. 
  20. Ryu JS, Lee HJ, Bae SH, Kim SY, Park Y, Suh HJ, et al. 2013. The bioavailability of red ginseng extract fermented by Phellinus linteus. J. Ginseng Res. 37: 108-16. 
  21. Shi H, Yin X, Wu M, Tang C, Zhang H, Li J. 2012. Cloning and bioinformatics analysis of an endoglucanase gene (Aucel12A) from Aspergillus usamii and its functional expression in Pichia pastoris. J. Ind. Microbiol. Biotechnol. 39: 347-357. 
  22. So JH, Do HJ, Rhee IK. 2010. Purification and characterization of $\beta$-glucosidase from Aspergillus usamii D5 capable of hydrolyzing isoflavone glycosides in soybean and astragali radix. J. Korean Soc. Appl. Biol. Chem. 53: 626-633. 
  23. Sua JH, Xua JH, Lu WY, Lin GQ. 2006. Enzymatic transformation of ginsenoside $Rg_3$ to $Rh_2$ using newly isolated Fusarium proliferatum ECU2042. J. Mol. Catal. B-enzyme 38: 113-118. 
  24. Singhania RR, Sukumaran RK, Rajasree KP, Mathew A, Gottumukkala L, Pandey A. 2011. Properties of a major $\beta$-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochem. 46: 1521-1524. 
  25. Wang YT, Li XW, Jin HY, Yu Y, You JY. 2007. Degradation of ginsenosides in root of Panax ginseng C. A. Mey. by highpressure microwave-assisted extraction. Chem. J. Chin. Univ. 28: 2264-2269. 
  26. Xu LL, Han T, Wu JZ, Zhang QY, Zhang H, Huang BK, et al. 2009. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 16: 609-616. 
  27. Yu H, Liu Q, Zhang C, Lu M, Fu Y, Im WT, et al. 2009. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi glycoside of PPD ginsenoside. Process Biochem. 44: 772-775. 
  28. Zhang C, Li D, Yu H, Zhang B, Jin F. 2007. Purification and characterization of piceid-$\beta$-glucosidase from Aspergillus oryzae. Process Biochem. 42: 83-88. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일