$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내 육종 고구마 전분의 이화학 호화 및 소화 특성

Characterization of Korean Sweet Potato Starches: Physicochemical, Pasting, and Digestion Properties

한국식품과학회지 = Korean journal of food science and technology, v.46 no.2, 2014년, pp.135 - 142  

백혜림 (서울대학교 농생명공학부) ,  김하람 (서울대학교 농생명공학부) ,  김경미 (농촌진흥청 국립농업과학원 농식품자원부) ,  김진숙 (농촌진흥청 국립농업과학원 농식품자원부) ,  한귀정 (농촌진흥청 국립농업과학원 농식품자원부) ,  문태화 (서울대학교 농생명공학부)

초록
AI-Helper 아이콘AI-Helper

국내에서 육종한 11가지 고구마의 전분 특성을 구명하여 새로운 식품 소재의 개발을 위한 기초자료로 이용하고자 전분의 이화학, 호화 및 소화 특성을 조사하였다. 아밀로스 함량은 12.5-17.4%의 범위를 보였으며, 아밀로펙틴 가지 사슬 분포는 시료 간에 유사하였다. 증미 전분의 아밀로펙틴 분자량이 가장 컸으며 대유미 전분은 가장 낮은 값을 보였다. 모든 고구마 전분의 X선 회절 양상은 C형 중에서도 A형에 가까운 $C_a$형을 나타내었다. 시차주사열량계로 측정한 열 특성에서 11품종 고구마 전분 중 신율미와 증미의 호화 온도가 높았고, 해피미는 낮았다. Rapid Visco Analyser로 페이스트 특성을 살펴보았을 때, 호화시간은 전분 입자의 크기, 최고점도, 강하점도와 음의 상관을 나타내었으며, 해피미가 가장 낮은 호화 온도와 치반점도를 보였고 강하점도와 최고점도 및 최종점도가 높았다. 소화 특성에서 증미의 RS 함량이 가장 많았으며, 신율미와 해피미는 SDS 함량이 많았다.

Abstract AI-Helper 아이콘AI-Helper

Physicochemical, pasting, and digestion properties of sweet potato starches from 11 Korean cultivars were investigated. Starch granules were variably oval, round, polygonal, spherical, and bell-shaped, and of 10.2-15.3 ${\mu}m$ in mean particle diameter. Amylose contents varied from 12.3 ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 국내에서 육종한 11가지 고구마의 전분 특성을 구명하여 새로운 식품 소재의 개발을 위한 기초자료로 이용하고자 전분의 이화학, 호화 및 소화 특성을 조사하였다. 아밀로스 함량은 12.
  • 최근 개발된 국내산 고구마에 대해서는 품종에 따른 전분 또는 분말의 이화학 성질에 대한 상세한 연구가 드물 며(9,10) 전분의 소화성과 구조 특성 간의 관계 또한 충분히 구명되어 있지 않다. 따라서 이 연구에서는 국내에서 육종된 11가지 고구마 전분의 이화학, 호화 및 소화 특성을 밝히고 이들 간의 상호 연관성을 분석하여 새로운 식품 소재로서의 사용 가능성을 알아보고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
영양학적으로 전분은 어떻게 분류되는가? 영양학적으로 전분은 소화되는 속도에 따라 RDS (rapidly digest-ible starch), SDS (slowly digestible starch), RS (resistanTstarch)의 3가지로 분류된다(4). RDS는 당뇨병, 심혈관 질환 및 비만에 영향을 미치는 것으로 알려진 당지수(glycemiCindex)와 관련되어 있다(5).
고구마 전분에서 팽윤력을 결정하는 주요 요소는? 전분을 구성하는 분자는 수소 결합에 의해 미셀 형태로 결정성 다발을 이루어 존재하므로(30) 입자 내 미셀망의 강도와 특성은 전분의 팽윤력을 결정하는 주요한 요소이다. 전분의 팽윤력은 전분을 함유하는 식품의 호화, 유변학적 특성 등에 영향을 미치며(31), 고도로 팽윤된 입자는 전분 페이스트의 강도를 감소시키는 것으로 알려져 있다(32).
RS는 인체에 어떤 영향을 미치는가? SDS는 인체에 글루코스를 더 오래 안정적으로 공급해주는 역할을 한다(6). 인체 생리적으로 RS는 식이섬유와 마찬가지로 장내 미생물에 의해 발효되어 butyrate를 생성함으로써 대장 환경에 유익한 영향을 미친다. 또한 Sajilata 등(7)에 의하면 RS는 대장암을 예방하고 혈당 및 콜레스테롤 수치를 낮추는 효과를 가지고 있으며, 지방질의 축적을 저해하고 무기질의 흡수를 증가시킨다.
질의응답 정보가 도움이 되었나요?

참고문헌 (38)

  1. Bovell-Benjamin AC. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 52: 1- 59 (2007) 

  2. Wanjekeche EW, Keya EL. Utilization of fresh cassava and sweet potato pulps in baking. Ecol. Food Nutr. 33: 237-248 (1995) 

  3. Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. Antioxidant activities, phenolic and ${\beta}$ -carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 103: 829-838 (2007) 

  4. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: S33-S50 (1992) 

  5. Ludwig DS. Dietary glycemic index and obesity. J. Nutr. 130: 280S-283S (2000) 

  6. Lehmann U, Robin F. Slowly digestible starch-its structure and health implications: a review. Trends Food Sci. Tech. 18: 346-355 (2007) 

  7. Sajilata M, Singhal RS, Kulkarni PR. Resistant starch-a review. Compr. Rev. Food Sci. F. 5: 1-17 (2006) 

  8. Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Saito K, Arachichige Mangalika WH, Hanaoka A, Suzuki Y, Yamauchi H. The effect of harvest dates on the starch properties of various potato cultivars. Food Chem. 86: 119-125 (2004) 

  9. Park JY, Ahn YS, Shin DH, Lim ST. Physicochemical properties of Korean sweet potato starches. J. Korean Soc. Food Sci. Nutr. 28: 1-8 (1999) 

  10. Baek MH, Cha DS, Park HJ, Lim ST. Physicochemical properties of commercial sweet potato starches. Korean J. Food Sci. Technol. 32: 755-762 (2000) 

  11. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67: 551-557 (1990) 

  12. Eerlingen RC, Jacobs H, Block K, Delcour JA. Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohyd. Res. 297: 347-356 (1997) 

  13. Rasper V. Investigations on starches from major starch crops grown in Ghana: III. Particle size and particle size distribution. J. Sci. Food Agr. 22: 572-580 (1971) 

  14. Gerard C, Barron C, Colonna P, Planchot V. Amylose determination in genetically modified starches. Carbohyd. Polym. 44: 19-27 (2001) 

  15. Lindeboom N, Chang PR, Tyler RT. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch-Starke 56: 89-99 (2004) 

  16. McPherson AE, Jane J. Comparison of waxy potato with other root and tuber starches. Carbohyd. Polym. 40: 57-70 (1999) 

  17. Hizukuri S. Effect of environment temperature of plants on the physicochemical properties of their starches. J. Japan Soc. Starch Sci. 17: 73-88 (1969) 

  18. Hanashiro I, Abe J, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohyd. Res. 283: 151-159 (1996) 

  19. Abdel-Aal ESM, Hucl P, Chibbar RN, Han HL, Demeke T. Physicochemical and structural characteristics of flours and starches from waxy and nonwaxy wheats. Cereal Chem. 79: 458-464 (2002) 

  20. Gomand SV, Lamberts L, Visser RGF, Delcour JA. Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties. Food Hydrocolloid. 24: 424- 433 (2010) 

  21. Sandhu KS, Lim ST. Digestibility of legume starches as influenced by their physical and structural properties. Carbohyd. Polym. 71: 245-252 (2008) 

  22. You SG, Izydorczyk MS. Molecular characteristics of barley starches with variable amylose content. Carbohyd. Polym. 49: 33-42 (2002) 

  23. Yoo SH, Jane JL. Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohyd. Polym. 49: 307-314 (2002) 

  24. Patindol JA, Gonzalez BC, Wang YJ, McClung AM. Starch fine structure and physicochemical properties of specialty rice for canning. J. Cereal Sci. 45: 209-218 (2007) 

  25. Tsakama M, Mwangwela AM, Manani TA, Mahungu NM. Physicochemical and pasting properties of starch extracted from eleven sweetpotato varieties. Afr. J. Food Sci. Technol. 1: 90-98 (2010) 

  26. Demeke T, Hucl P, Abdel-Aal ESM, Baga M, Chibbar RN. Biochemical characterization of the wheat waxy a protein and its effect on starch properties. Cereal Chem. 76: 694-698 (1999) 

  27. Stevenson DG, Doorenbos RK, Jane JL, Inglett GE. Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch-Starke 58: 509-519 (2006) 

  28. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76: 629-637 (1999) 

  29. Kaur M, Sandhu KS, Lim ST. Microstructure, physicochemical properties and in vitro digestibility of starches from different Indian lentil (Lens culinaris) cultivars. Carbohyd. Polym. 79: 349-355 (2010) 

  30. Oladebeye AO, Oshodi AA, Oladebeye AA. Physicochemical properties of starches of sweet potato (Ipomea batata) and red cocoyam (Colocasia esculenta) cormels. Pak. J. Nutr. 8: 313-315 (2009) 

  31. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohyd. Polym. 62: 25-34 (2005) 

  32. Eliasson AC. Viscoelastic behaviour during the gelatinization of starch I: Comparison of wheat, maize, potato and waxy-barley starches. J. Texture Stud. 17: 253-265 (1986) 

  33. Moorthy SN. Tuber Crop Starches. Central Tuber Crops Research Institute, Kerala, India. pp. 1-52. (2001) 

  34. Jenkins DJA, Jenkins AL, Wolever TMS, Josse RG, Wong GS. The glycaemic response to carbohydrate foods. Lancet 324: 388-391 (1984) 

  35. Snow P, O'Dea K. Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr. 34: 2721-2727 (1981) 

  36. Goddard MS, Young G, Marcus R. The effect of amylose content on insulin and glucose responses to ingested rice. Am. J. Clin. Nutr. 39: 388-392 (1984) 

  37. Guraya HS, Kadan RS, Champagne ET. Effect of rice starch-lipid complexes on in vitro digestibility, complexing index, and viscosity. Cereal Chem. 74: 561-565 (1997) 

  38. Jacobs H, Eerlingen RC, Clauwaert W, Delcour JA. Influence of annealing on the pasting properties of starches from varying botanical sources. Cereal Chem. 72: 480-487 (1995) 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트