• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

데이터마이닝 알고리즘을 이용한 제품수명주기 예측 : 의류산업 적용사례

Prediction of Product Life Cycle Using Data Mining Algorithms : A Case Study of Clothing Industry


Demand forecasting plays a key role in overall business activities such as production planning, distribution management, and inventory management. Especially, for a fast-changing environment of the clothing industry, logical forecasting techniques are required. In this study, we propose a procedure to predict product life cycle using data mining algorithms. The proposed procedure involves three steps : extracting key variables from profiles, clustering, and classification. The effectiveness and applicability of the proposed procedure were demonstrated through a real data from a leading clothing company in Korea.

참고문헌 (27)

  1. Park, S. B., Kim, J. W., Jeon, S. I., Kim, C. W., Choi, E. J., Lee, C. H. and Huh, Y. S. (2012), Effective demand forecasting methods and practices, Samsung Economic Research Institute, Seoul, Korea. 
  2. Rousseeuw, P. J. (1987), Silhouettes : a graphical aid to the interpretation and validation of cluster analysis, Journal of computational and applied mathematics, 20, 53-65. 
  3. Shin, S. C. and Song, M. S. (2003), Bias Reduction in Split Variable Selection in C4. 5, Communications of the Korean statistical society, 10(3), 627-635. 
  4. Shmueli, G., Patel, N. R. and Bruce, P. C. (2008), Data mining for business intelligence : Concepts, techniques, and applications in Microsoft Office Excel with XLMiner, Wiley.com. 
  5. Thomassey, S. and Fiordaliso, A. (2006), A hybrid sales forecasting system based on clustering and decision trees, Decision Support Systems, 42(1), 408-421. 
  6. Thomassey, S. and Happiette, M. (2007), A neural clustering and classification system for sales forecasting of new apparel items, Applied Soft Computing, 7(4), 1177-1187. 
  7. Ye, J. S. and Kim, M. S. (2005), New Marketing, 295-307, Pakyoungsa, Seoul, Korea. 
  8. Turney, P. (1995), Cost-sensitive classification : Empirical evaluation of a hybrid genetic decision tree induction algorithm, Journal of Artificial Intelligence Research (JAIR), 2. 
  9. Kim, G. S., Kim, J. h., Kim, H. T., Suh, C. J. and Erh, Y. Y. (2011), Production and operations management system of the green era, 200- 212, Bobmunsa, Seoul, Korea. 
  10. Hong, J. S. and Koo, H. Y. (2013), Constrained NLS Method for Longterm Forecasting with Short-term Demand Data of a New Product, Journal of the Korean Operations Research and Management Science Society, 33(1), 45-59. 
  11. Kaufman, L. and Rousseeuw, P. J. (2009), Finding groups in data : an introduction to cluster analysis, Wiley.com. 
  12. KIET (2012), Apparel stock market status and Implications, Policy report of Ministry of Knowledge Economy, http://www.korea.kr/archive/ expDocView.do?docId=32370. 
  13. Kim, J. H. (2004), ROC and Cost Graphs for General Cost Matrix Where Correct Classifications Incur Non-zero Costs1), Communications for statistical applications and methods, 11(1), 21-30. 
  14. Kim, K. H., Kim, J. S., Kang, H. I. and Jun, C. H. (2000), Market Forecasting Modeling Using the Diffusion Model for the Strategic Items in Information/Telecommunication Aria, Electronics and Telecommunications Trends, 15(6), 178-189. 
  15. Kim, O. N. (2008), Demand forecasting system, how to build one, LG Economic Research Institute, Seoul, Korea. 
  16. Kim, U. C. (2006), Modern Statistics, 4th, 427-428, Youngji publishers, Seoul, Korea. 
  17. Koo, H. Y. and Min, D. K. (2013), Forecasting renewable energy using delphi survey and the economic evaluation of long-term generation mix, Journal of the Korean Institute of Industrial Engineers, 39(3), 183-191. 
  18. Lim, J. I. and Oh, H. S. (1992), A Study on the New Product Forecasting Methodology, Journal of the Korean Institute of Industrial Engineers, 18(2), 51-63. 
  19. Mahajan, V. and Muller, E. (1979), Innovation diffusion and new product growth models in marketing, The Journal of Marketing, 55-68. 
  20. Mahajan, V. (Ed.) (1986), Innovation diffusion models of new product acceptance, Ballinger. 
  21. Min, J. H. and Jeong, C. W. (2009), A GA-based Classification Model for Predicting Consumer Choice, Journal of the Korean Operations Research and Management Science Society, 34(3), 29-41. 
  22. Bowerman, B. L., O'Connell, R. T. and Koehler, A. B. (2005), Forecasting, time series, and regression : an applied approach, South-Western Pub. 
  23. Buzzell, R. D. (1966), Competitive behavior and product life cycles, New ideas for successful marketing, 46-68. 
  24. Choi, J. H. and Kang, H. C. (2001), A Study on the Demand Forecasting using Diffusion Models and Growth Curve Models, The Korean journal of applied statistics, 14(2), 233-243. 
  25. Curram, S. P. and Mingers, J. (1994), Neural networks, decision tree induction and discriminant analysis : an empirical comparison, Journal of the Operational Research Society, 440-450. 
  26. Gorden, A. D. (1999), Classification, Chapman and Hall/CRC, New York, USA. 
  27. Hastie et al. (2001), The Element of Statistical Learning, Springer. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일