$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development and Characterization of Expression Vectors for Corynebacterium glutamicum 원문보기

Journal of microbiology and biotechnology, v.24 no.1, 2014년, pp.70 - 79  

Lee, Jinho (Department of Food Science and Biotechnology, Kyungsung University)

Abstract AI-Helper 아이콘AI-Helper

In an attempt to develop a variety of expression vector systems for Corynebacterium glutamicum, six types of promoters, including $P_{tac}$, $P_{sod}$, $P_{sod}$ with a conserved Shine-Dalgarno (SD) sequence from C. glutamicum, $P_{ilvC}$, $P_{ilvC}$<...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • glutamicum with two different vectors for over-production of valuable metabolites or proteins. I expect that the developed expression vector systems will apply to the study of genetics, physiology, and metabolic engineering of C. glutamicum.
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Becker J, Wittmann C. 2012. Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory. Curr. Opin. Biotechnol. 23: 631-640. 

  2. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587- 8596. 

  3. Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. 2011. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168. 

  4. Berg L, Lale R, Bakke I, Burroughs N, Valla S. 2009. The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5'-untranslated part of mRNA. Microb. Biotechnol. 2: 379-389. 

  5. Billman-Jacobe H, Wang L, Kortt A, Steward D, Radford A. 1995. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613. 

  6. Cortay JC, Negre D, Galinier A, Duclos B, Perriere G, Cozzone AJ. 1991. Regulation of the acetate operon in Escherichia coli: purification and functional characterization of the IclR repressor. EMBO J. 10: 675-679. 

  7. Date M, Itaya H, Matsui H, Kikuchi Y. 2006. Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett. Appl. Microbiol. 42: 66-70. 

  8. de Smit MH, van Duin J. 1994. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244: 144-150. 

  9. Hanssler E, Muller T, Palumbo K, Patek M, Brocker M, Kramer R, Burkovski A. 2009. A game with many players: control of gdh transcription in Corynebacterium glutamicum. J. Biotechnol. 142: 114-122. 

  10. Hermann T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104: 155-172. 

  11. Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109. 

  12. Jager W, Schafer A, Puhler A, Labes G, Wohlleben W. 1992. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J. Bacteriol. 174: 5462-5465. 

  13. Jakoby M, Ngouoto-Nkili CE, Burkovski A. 1999. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol. Tech. 13: 437-441. 

  14. Jana S, Deb JK. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67: 289-298. 

  15. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25. 

  16. Khlebnikov A, Risa O, Skaug T, Carrier TA, Keasling JD. 2000. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J. Bacteriol. 182: 7029-7034. 

  17. Kim HJ, Kim TH, Kim Y, Lee HS. 2004. Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J. Bacteriol. 186: 3453-3460. 

  18. Kohlstedt M, Becker J, Wittmann C. 2010. Metabolic fluxes and beyond - systems biology understanding and engineering of microbial metabolism. Appl. Microbiol. Biotechnol. 88: 1065- 1075. 

  19. Komarova AV, Tchufistova LS, Dreyfus M, Boni IV. 2005. AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J. Bacteriol. 187: 1344-1349. 

  20. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-( $\Delta\Delta$ CT) method. Methods 25: 402-408. 

  21. Martin JF, Barreiro C, Gonzalez-Lavado E, Barriuso M. 2003. Ribosomal RNA and ribosomal proteins in corynebacteria. J. Biotechnol. 104: 41-53. 

  22. Nesvera J, Patek M. 2011. Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl. Microbiol. Biotechnol. 90: 1641-1654. 

  23. Neuner A, Heinzle E. 2011. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol. J. 6: 318-329. 

  24. Park JU, Jo JH, Kim YJ, Chung SS, Lee JH, Lee HH. 2008. Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes. J. Microbiol. Biotechnol. 18: 639-647. 

  25. Park YS, Seo SW, Hwang S, Chu HS, Ahn JH, Kim TW, et al. 2007. Design of 5'-untranslated region variants for tunable expression in Escherichia coli. Biochem. Biophys. Res. Commun. 356: 136-141. 

  26. Patek M, Eikmanns BJ, Patek J, Sahm H. 1996. Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142: 1 2 97- 1309. 

  27. Ravasi P, Peiru S, Gramajo H, Menzella HG. 2012. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb. Cell Fact. 11: 147-157. 

  28. Romasi EF, Lee J. 2013. Development of indole-3-acetic acidproducing Escherichia coli by functional expression of IpdC, AspC, and Iad1. J. Microbiol. Biotechnol. 23: 1726-1736. 

  29. Salim K, Haedens V, Content J, Leblon G, Huygen K. 1997. Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl. Environ. Microbiol. 63: 4392-4400. 

  30. Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27: 946-950. 

  31. Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 

  32. Santamaria R, Gil JA, Mesas JM, Martin JF. 1984. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen. Microbiol. 130: 2237-2246. 

  33. Seo SW, Yang J, Jung GY. 2009. Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli. Biotechnol. Bioeng. 104: 611-616. 

  34. Suzuki N, Inui M, Yukawa H. 2007. Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 77: 871-878. 

  35. Tauch A, Puhler A, Kalinowski J, Thierbach G. 2003. Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J. Biotechnol. 104: 27-40. 

  36. Tsuchiya M, Morinaga Y. 1988. Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Nat. Biotechnol. 6: 428-430. 

  37. van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545. 

  38. Vasco-Cardenas MF, Banos S, Ramos A, Martin JF, Barreiro C. 2013. Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C4 and C5 dicarboxylic acids. J. Proteomics 85: 65-88. 

  39. Vasicova P, Patek M, Nesvera J, Sahm H, Eikmanns B. 1999. Analysis of the Corynebacterium glutamicum dapA promoter. J. Bacteriol. 181: 6188-6191. 

  40. Wendisch VF. 2003. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J. Biotechnol. 104: 273-285. 

  41. Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로