$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

폴리(메틸 메타크릴레이트)-개질된 전분과 스티렌-부타디엔 고무의 혼합에서 커플링제 메틸렌 디이소시아네이트의 효과

Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber

초록

메틸렌 디이소시아네이트(MDI)가 폴리(메틸 메타크릴레이트)-개질된 전분/스티렌-부타디엔 고무(PMMA-modified starch/SBR) 복합체의 물성을 향상시키기 위하여 새로운 개질제로 조사되었다. 한쪽에는 우레탄 결합의 형성으로 인해 다른 한쪽에는 ${\pi}-{\pi}$ 접착 때문에 MDI는 PMMA-modified starch/SBR 계면에서 중간 결합 역할을 하는 것이 형태학적, 기계적, 동역학적 그리고 열적 분해 연구에 의하여 증명되었다. 결과적으로, MDI의 존재는 PMMA-modified starch/SBR 복합체의 기계적 물성과 열적 안정성을 괄목할만하게 개선하였다. 게다가, 생성된 MDI/PMMA-modified starch/SBR 복합체의 여러 가지 물성에 대한 전분 함량의 효과가 형태학, 가황 특성, 기계적 물성, 톨루엔 팽윤 거동, 그리고 열적 안정성에서 조사되었고 자세하게 논의되었다. MDI/PMMA-modified starch/SBR 복합체는 carbon black/SBR(CB/SBR) 복합체보다 우수한 물성을 보였고, 고무 배합물에서 CB의 대체물로서 재생 가능한 전분의 유력한 사용을 보여주었다.

Abstract

Methylene diisocyanate (MDI) was investigated as a novel interfacial modifier to enhance the performances of poly(methyl methacrylate)-modified starch/styrene-butadiene rubber (PMMA-modified starch/SBR) composites. Owing to the formation urethane linkage on one side and ${\pi}-{\pi}$ adhesion on the other side, MDI acted as an intermediated linkage role in the PMMA-modified starch/SBR interfaces, which was evidenced by the morphological, mechanical, dynamic mechanical and thermal decomposition studies. As a result, the presence of MDI significantly improved the mechanical properties and thermal stability of PMMA-modified starch/SBR composites. In addition, the effect of starch concentration on the various performances of the resulted MDI/PMMA-modified starch/SBR composites, such as morphology, vulcanization characteristics, mechanical properties, toluene swelling behavior, and thermal stability were investigated and discussed in detail. The obtained MDI/PMMA-modified starch/SBR composites exhibited superior mechanical properties to carbon black/SBR (CB/SBR) composites, demonstrating the potential use of the renewable starch as a substitute for CB in the rubber compounds.

저자의 다른 논문

참고문헌 (40)

  1. Y. P. Wu, M. Q. Ji, Q. Q, Y. Q. Wang, L. Q. Zhang, "Preparation, structure, and properties of starch/rubber composites prepared by co-coagulating rubber latex and starch paste", Macromol. Rapid. Commun., 26, 565 (2004). 
  2. Y. P. Wu, Q. Qi, G. H. Liang, L. Q. Zhang, "A strategy to prepare high performance starch/rubber composites: In situ modification during latex compounding process", Carbohyd. Polym., 65, 109 (2006). 
  3. H. Tang, Q. Qi, Y. P. Wu, G. Liang, L. Q. Zhang, J. Ma, "Reinforcement of elastomer by starch", Macromol. Mater. Eng., 291, 629 (2006). 
  4. Q. Qi, Y. P. Wu, M. Tian, G. H. Liang, L. Q. Zhang, J. Ma, "Modification of starch for high performance elastomer", Polymer, 47, 3896 (2006). 
  5. C. Liu, Y. Shao, D. Jia, "Chemically modified starch reinforced natural rubber composites", Polymer, 49, 2176 (2008). 
  6. C. Nakason, A. Kaesaman, K. Eardrod. "Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)-cassava starch compounds", Matter. Lett., 59, 4020 (2005). 
  7. P. M. Visakh, S. Thomas, K. Oksman, A. P. Mathew, "Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/ thermal properties", Compos. Part A, 43, 735 (2012). 
  8. X. Cao, C. Xu, Y. Wang, Y. Liu, Y. Chen, "New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber", Polym. Test., 32, 819 (2013). 
  9. B. Kosikova, A. Gregorova, A. Osvald, J. Krajcovicova, "Role of lignin filler in stabilization of natural rubber-based composites", J. Appl. Polym. Sci., 103, 1226 (2007). 
  10. H. Ismail, S. M. Shaari, N. Othman, "The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds", Polym. Test., 30, 784 (2011). 
  11. Z. A. M. Ishak, H. Ismail, "An investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR)", Eur. Polym. J., 31, 259 (1995). 
  12. Z. H. Ooi, H. Ismail, A. A. Bakar, "Synergistic effect of oil palm ash filled natural rubber compound at low filler loading, Polym. Test., 32, 38 (2013). 
  13. F. G. Corvasce, T. D. Linster, G. Thielen, "Starch composite reinforced rubber composition and tire with at least one component thereof", U. S. Patent 5, 672, 639 (1997). 
  14. P. H. Sandstrom, "Rubber containing starch reinforcement and tire having component thereof", U. S. Patent 6, 391, 1945 (2001). 
  15. M. C. Li, X. Ge, U. R. Cho, "Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber", Macromol. Res., 21, 519 (2013). 
  16. M. C. Li, X. Ge, U. R. Cho, "Mechanical performance, water absorption behavior and biodegradability of poly (methyl methacrylate)-modified starch/SBR composites", Macromol. Res., 21, 793 (2013). 
  17. K. Wilpiszewska, T. Spychaj, "Chemical modification of starch with hexamethylene diisocyanate derivatives", Carbohyd. Polym., 70, 334 (2007). 
  18. M. C. Li, U. R. Cho, "Effectiveness of coupling agents in the poly (methyl methacrylate)-modified starch/styrene-butadiene rubber interfaces", Matter. Lett., 92, 132 (2013). 
  19. H. Wang, X. Sun, P. Seib, "Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate", J. Appl. Polym. Sci., 82, 1761 (2001). 
  20. M. Kotal, S. K. "Srivastava, Synergistic effect of organomodification and isocyanate grafting of layered double hydroxide in reinforcing properties of polyurethane nanocomposites", J. Mater. Chem., 21, 18540 (2011). 
  21. I. Zaman, T. T. Phan, H. C. Kuan, Q. Meng, L. T. B. La, L. Luong, O. Youssf, J. Ma, Polymer, 52, 1603 (2011). 
  22. K. C. M. Nair, S. Thomas, "Effect of interface modification on the mechanical properties of polystyrene-sisal fiber composites", Polym. Compos., 24, 332 (2003). 
  23. T. Ohkita, S. H. Lee, "Effect of aliphatic isocyanates (HDI and LDI) as coupling agents on the properties of eco-composites from biodegradable polymers and corn starch", J. Adhes. Sci. Technol., 18, 905 (2004). 
  24. T. Ohkita, S. H. Lee, "Thermal degradation and biodegradability of poly (lactic acid)/corn starch composites", J. Appl. Polym. Sci., 100, 3009 (2006). 
  25. S. H. Lee. S. Wang, "Biodegradable polymers/bamboo fiber composites with bio-based coupling agent", Compos. Part A, 37, 80 (2006). 
  26. D. Maldas, B. V. Kokta, C. Daneaulf," Influence of coupling agents and treatments on the mechanical properties of cellulose fiber-polystyrene composites", J. Appl. Polym. Sci., 37, 751 (1989). 
  27. P. J. Flory, J. Rehner, "Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling", J. Chem. Phys., 11, 512 (1943). 
  28. A. K. Bledzki, J. Gassan, "Composites reinforced with cellulose based fibres", Prog. Polym. Sci., 24, 221 (1999). 
  29. A. P. Mathew, S. Packirisamy, S. Thomas, "Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis", Polym. Degrad. Stab., 72, 423 (2001). 
  30. S. J. Park, K. S. Cho, "Filler-elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites", J. Colloid Interf. Sci., 267, 86 (2003). 
  31. J. L. Willett, "Mechanical properties of LDPE/granular starch composites", J. Appl. Polym. Sci., 54, 1685 (1994). 
  32. W. B. Wennekes, J. W. M. Noordermeer, R. N. Datta, "Mechanistic investigations into the adhesion between RFL-treated cords and rubber. part I: the Influence of rubber curatives", Rubber Chem. Technol., 80, 545 (2007). 
  33. Z. Wang, J. Liu, S. Wu, W. Wang, L. Zhang, "Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers", Phys. Chem. Chem. Phys., 12, 3014 (2010). 
  34. L. D. Perez, M. A. Zuluaga, T. Kyu, J. E. Mark, B. L. Lopez, "Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites", Polym. Eng. Sci., 49, 866 (2009). 
  35. L. Bokobza, "Multiwall carbon nanotube-filled natural rubber: electrical and mechanical properties", Express Polym. Lett., 6, 213 (2012). 
  36. C. A. Rezende, F. C. Braganca, T. R. Doia, L.-T. Lee, F. Galembeck, F. Boue, "Natural rubber-clay nanocomposites: mechanical and structural properties", Polymer, 51, 3644 (2010). 
  37. S. Praveen, P. K. Chattopadhyay, P. Albert, V. G. Dalvi, B. C. Chakraborty, S. Chattopadhyay, "Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure, Compos. Part A, 40, 309 (2009). 
  38. E. Guth, O. Gold, "On the hydrodynamical theory of the viscosity of suspensions". Phys. Rev., 53, 322 (1938). 
  39. E. Guth, "Theory of filler reinforcement", J. Appl. Phys., 16, 20 (1945). 
  40. J. C. Halpin, "Stiffness and expansion estimates for oriented short-fiber composites", J. Compos. Mater., 3, 732 (1969). 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일