$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생체이온 변화 유발 후 경혈과 비경혈에서의 생체 구조 성분 분석 및 비교를 통한 경혈 특이성 고찰
Body Composition Factor Comparisons of the Intracellular Fluid(ICW), Extracellular Fluid(ECW) and Cell Membrane at Acupuncture Points and Non-Acupuncture Points by Inducing Multiple Ionic Changes 원문보기

Korean journal of acupuncture, v.31 no.2, 2014년, pp.66 - 78  

김수병 (한국생산기술연구원, 휴먼문화융합연구실용화그룹 웰니스 R&D 센터) ,  정경렬 (한국생산기술연구원, 휴먼문화융합연구실용화그룹 웰니스 R&D 센터) ,  전미선 (한국생산기술연구원, 휴먼문화융합연구실용화그룹 웰니스 R&D 센터) ,  신태민 (연세대학교 보건과학대학 의공학부, 의용컴퓨터시스템연구실) ,  이용흠 (연세대학교 보건과학대학 의공학부, 동서의료시스템연구실)

초록
AI-Helper 아이콘AI-Helper

목적 : 경혈의 임피던스를 측정하여 경혈의 특이성을 확보하고자 다수 연구가 진행되어왔다. 직류전압교류전압을 자극하여 단순히 경혈이 위치한 피부 임피던스를 측정하는 방식이 아닌 Multi-Frequency Body Impedance analysis(MF BIA) 기법을 이용하여 생체 구조 성분(세포 외액, 세포내액의 저항성분 그리고 세포막의 용량성분)을 추출하는 방법을 이용하여 경혈의 특이성을 확보하고자 한다. 인체 내 생체 이온 변화가 발생하였을 시, 경혈이 비경혈에 발생 전/후 높은 변화율이 관찰될 것이라는 가정을 하에, 생체 이온 변화를 유도하기 위하여 근피로를 유발하였으며, 유도 전/후의 생체 구조 성분을 비교 분석하였다. 방법: 대퇴직근에 근피로를 유도하기 위하여 건강한 대학생에게 Knee extension/flexion의 등속도 운동을 통하였다. 생체 이온 변화를 확인하기 위하여 젖산을 측정하였으며, 피험자마다 동일한 근피로를 유발하기 위하여 EMG(electromyogram) 분석을 통하여 peak torque와 median frequency를 분석하였다. 근피로 유발 24시간 이후까지 젖산과 peak torque와 median frequency을 측정하였으며, 각 단계마다 복토(ST32), 음시(ST33) 과 인접한 비경혈 2개에 대하여 생체 구조 성분 또한 측정하였다. 결과 : 젖산과 peak torque와 median frequency은 24시간 이후 근피로 유발 전으로 회복되었다. 세포외액 저항성분의 경우 비경혈에 비하여 복토(ST32)에서 생체 이온 변화에 따라 높은 변화율이 관찰되었으나, 음시(ST33) 에서는 비경혈에 비하여 낮은 변화율이 관찰되었다. 세포내액 저항성분은 경혈과 비경혈 사이 유의한 차이가 관찰되지 않았다. 복토(ST32)에서 세포막의 용량성분이 높은 변화율이 관찰되었지만, 음시(ST33)와 인접한 비경혈간의 뚜렷한 차이가 확인되지 않았다. 결론 : 생체 이온 변화에 따라 인접한 비경혈과 비교해보았을 시, 경혈에서의 상대적으로 높고 낮은 혹은 유사한 변화율이 관찰되었다. 따라서 경혈의 특이성을 확보하지 못하였으며, 생체 구조 성분 추출을 통하여 세포 이온 변화에 따른 경혈의 특이성을 확보하기에는 한계점을 가지고 있다고 결론을 내렸다.

Abstract AI-Helper 아이콘AI-Helper

Objectives : The specificity of acupuncture point has been a highly controversial subject. Existing researches said that ion-distribution differences are observed on the acupuncture point. This study was conducted under the assumption that multiple ionic changes induced by muscle fatigue would be di...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The purpose of this study was to distinguish the difference between acupuncture points and non-acupuncture points in order to determine the therapeutic significance and application of acupuncture points. We generated muscle fatigue in the quadriceps after strenuous knee extension/flexion exercises to induce multiple ionic changes in gradients at acupuncture points or non-acupuncture point locations.
  • Therefore, it is necessary to approach the new research method to confirm the difference between acupuncture points and non-acupuncture points. This study conducted a comparative experiment on body composition at both acupuncture points and non-acupuncture points upon inducing fatigue. When fatigue occurs, the blood lactate is strongly affected by multiple ionic changes generated across the sarcolemma, transverse(t-) and tubular membranes.
  • Provided that an acupuncture point responds more quickly and dramatically than a nonacupuncture point, a stronger correlation between changes in body composition factors and blood lactate levels should be observed at an acupuncture point than at a non-acupuncture point. Thus, this study sought to distinguish the differences between acupuncture points and non-acupuncture points.
본문요약 정보가 도움이 되었나요?

참고문헌 (44)

  1. Dang RS, Chen EY, Shen XY, Zhu WJ, Wang PJ, Fei L. The relationship of acupuncture points and connective tissue structure of Lung Meridian of Hand-Taiyin[J]. Shanghai Zhen Jiu Za Zhi. 1997 ; 6(4) : 28-9. 

  2. Yan X, Zhang X, Liu C, Dang R, Huang Y, He W, et al. Do acupuncture points exist? Phys Med Biol. 2009 ; 4(9) : N143-50. 

  3. Langevin HM, Yandow JA. Relationship of acupuncture points and meridians to connective tissue planes. Anat Rec. 2002 ; 269(6) : 257-65. 

  4. Fei L, Chen HS, Cai DH, Yang SX, Xu JR, Chen EY, Dang RS, Ding GH, Shen XY, Tang Y. Study expectation and exploration on basic materials and functions of meridians. Sci Forum. 1998 ; 43 : 658-72. 

  5. Dorsher PT, Fleckenstein J. Trigger Points and Classical Acupuncture Points: Part 1: Qualitative and Quantitative Anatomic Correspondences. Deutsche Zeitschrift fur Akupunktur. 2008 ; 51(3) : 15-24. 

  6. Nakatani Y. Skin electric resistance and ryodoraku. J Autonomic Nerve. 1956 ; 6 : 52. 

  7. Vallette C, Niboyet JE, Imbert M, Dupont M, Roccia L. Trial of acupunctural anesthesia with electric stimulation in obstetrics. Apropos of our 1st 2 cases. J Gynecol Obstet Biol Reprod. 1973 ; 2(5) : 567-72. [in French] 

  8. Chen KG. Electrical properties of meridians. Engineering in Medicine and Biology Magazine, IEEE. 1996 ; 15(3) : 58-63. 

  9. Lu WA, Tsuei JJ, Chen KG. Preferential direction and symmetry of electric conduction of human meridians. Bilaterally symmetrical acupuncture points provide better conductance for a better "connection". IEEE Eng Med Biol Mag. 1999 ; 18(1) : 76-8. 

  10. Chen L, Tang J, White PF, Sloninsky A, Wender RH, Naruse R, et al. The effect of location of transcutaneous electrical nerve stimulation on postoperative opioid analgesic requirement: acupuncture point versus nonacupuncture point stimulation. Anesth Analg. 1998 ; 87(5) : 1129-34. 

  11. Ding G, Yao W, Chu J, Shen X, Huang Z, Cheng H, et al. Spectral characteristic of infrared radiations of some acupuncture point and non-acupuncture point areas in human arm surface. Chinese Science Bulletin. 2001 ; 46(8) : 678-82. 

  12. Shen X. Physical basis of bio-system's ultra-weak radiation, Physics in Life Science (eds. Gan ZC, Han NS, Zhang XQ). Beijing: Peking University Press. 1996 : 49-69. [in Chinese] 

  13. Bouclin R, Charbonneau E, Renaud JM. Na+ and K+ effect on contractility of frog sartorius muscle: implication for the mechanism of fatigue. Am J Physiol. ; 268(6 Pt 1) : C1528-36. 

  14. Broch-Lips M, Overgaard K, Praetorius HA, Nielsen OB. Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat skeletal muscles. J Appl Physiol (1985). 2007 ; 103(2) : 494-503. 

  15. Panotopoulos G, Ruiz JC, Guy-Grand B, Basdevant A. Dual x-ray absorptiometry, bioelectrical impedance, and near infrared interactance in obese women. Med Sci Sports Exerc. 2001 ; 33(4) : 665-70. 

  16. Gomez T, Mole PA, Collins A. Dilution of body fluid electrolytes affects bioelectrical impedance measurements. Research in Sports Medicine: An International Journal. 1993 ; 4(4) : 291-8. 

  17. Deurenberg P, Weststrate JA, Paymans I, van der Kooy K. Factors affecting bioelectrical impedance measurements in humans. Eur J Clin Nutr. 1988 ; 42(12) : 1017-22. 

  18. Brown BH, Karatzas T, Nakielny R, Clarke RG. Determination of upper arm muscle and fat areas using electrical impedance measurements. Clin Phys Physiol Meas. 1988 ; 9(1) : 47-55. 

  19. Heymsfield SB, Gallagher D, Grammes J, Nunez C, Wang Z, Pietrobelli A. Upper extremity skeletal muscle mass: potential of measurement with single frequency bioimpedance analysis. Appl Radiat Isot. 1998 ; 49(5-6) : 473-4. 

  20. Goovaerts HG, Faes TJ, de Valk-de Roo GW, ten Bolscher M, Netelenbosch JC, van der Vijgh WJ, et al. Extra-cellular volume estimation by electrical impedance--phase measurement or curve fitting: a comparative study. Physiol Meas. 1998 ; 19(4) : 517-26. 

  21. De Luca CJ. Myoelectrical manifestations of localized muscular fatigue in humans. Crit Rev Biomed Eng. 1984 ; 11(4) : 251-79. 

  22. Merletti R, Sabbahi MA, De Luca CJ. Median frequency of the myoelectric signal. Effects of muscle ischemia and cooling. Eur J Appl Physiol Occup Physiol. 1984 ; 52(3) : 258-65. 

  23. De Luca CJ. The use of surface electromyography in biomechanics. Journal of applied biomechanics. 1997 ; 13 : 135-63. 

  24. Nakatani Y. An aspect of the study of Ryodoraku. Clinic of Chinese Medicine 1956 ; 3(7) : 54. 

  25. Niboyet JEH, Bourdiol RJ, Regard PG. Traite d'acupuncture. Maissonneuve. 1970. 

  26. Zhu ZX. Research advances in the electrical specificity of meridians and acupuncture points. Am J Acupunct. 1981 ; 9 : 203-16. 

  27. Voll R. Topographic positions of the measurement points in electroacupunture. Am J Acupunct. 1977 ; 5 : 97. 

  28. Cole KS. Membranes, ions, and impulses: a chapter of classical biophysics (Vol. 1). Univ of California Press 1968. 

  29. Woo EJ, Hua P, Webster JG, Tompkins WJ, Pallas-Areny R. Skin impedance measurements using simple and compound electrodes. Med Biol Eng Comput. 1992 ; 30(1) : 97-102. 

  30. Webster JG. Medical Instrumentation: Application and Design, 2nd ed. Boston, MA: Houghton Mifflin. 1998. 

  31. Rosell J, Colominas J, Riu P, Pallas-Areny R, Webster JG. Skin impedance from 1 Hz to 1 MHz. IEEE Trans Biomed Eng. 1988 ; 35(8) : 649-51. 

  32. Yamamoto Y, Nakamura T, Kusuhara T. Consideration of conditions required for multi-channel simultaneous bioimpedance measurement. In Instrumentation and Measurement Technology Conference, 1998. IMTC/98. Conference Proceedings. IEEE. IEEE 1998 ; 1 : 231-4. 

  33. Cairns SP, Lindinger MI. Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol. 2008 ; 586(Pt 17) : 4039-54. 

  34. Cairns SP, Hing WA, Slack JR, Mills RG, Loiselle DS. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle. J Appl Physiol (1985). 1998 ; 84(4) : 1395-406. 

  35. Quinonez M, Gonzalez F, Morgado-Valle C, DiFranco M. Effects of membrane depolarization and changes in extracellular [K(+)] on the Ca ( $^{2+}$ ) transients of fast skeletal muscle fibers. Implications for muscle fatigue. J Muscle Res Cell Motil. 2010 ; 31(1) : 13-33. 

  36. Overgaard K, Nielsen OB, Clausen T. Effects of reduced electrochemical Na+ gradient on contractility in skeletal muscle: role of the Na+-K+ pump. Pflugers Arch. 1997 ; 434(4) : 457-65. 

  37. Nielsen OB, de Paoli F, Overgaard K. Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol. 2001 ; 536(Pt 1) : 161-6. 

  38. Pedersen TH, Nielsen OB, Lamb GD, Stephenson DG. Intracellular acidosis enhances the excitability of working muscle. Science. 2004 ; 305(5687) : 1144-7. 

  39. Kristensen M, Albertsen J, Rentsch M, Juel C. Lactate and force production in skeletal muscle. J Physiol. 2005 ; 562(Pt 2) : 521-6. 

  40. Usher-Smith JA, Xu W, Fraser JA, Huang CL. Alterations in calcium homeostasis reduce membrane excitability in amphibian skeletal muscle. Pflugers Arch. 2006 ; 453(2) : 211-21. 

  41. Campbell JMH, Mitchell GO, Powell ATW. The influence of exercise on digestion. Guy's Hosp Rep. 1928 ; 78 : 279-93. 

  42. Hellebrandt FA, Tepper RH. Studies on the influence of exercise on the digestive work of the stomach II. Its Effect on Emptying Time. American Journal of Physiology--Legacy Content. 1934 ; 107(2) : 355-63. 

  43. Fordtran JS, Saltin B. Gastric emptying and intestinal absorption during prolonged severe exercise. J Appl Physiol. 1967 ; 23(3) : 331-5. 

  44. Read NW, Miles CA, Fisher D, Holgate AM, Kime ND, Mitchell MA, et al. Transit of a meal through the stomach, small intestine, and colon in normal subjects and its role in the pathogenesis of diarrhea. Gastroenterology. 1980 ; 79(6) : 1276-82. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로