$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

점착성, 비점착성 부유사 모형에 대한 Schmidt 수의 영향
Effect of Schmidt Number on Cohesive and Non-cohesive Sediment Suspension Modeling 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.47 no.8, 2014년, pp.703 - 715  

변지선 (충남대학교 공과대학 토목공학과) ,  손민우 (충남대학교 공과대학 토목공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 Schmidt 수(${\sigma}_c$)에 따른 부유사의 부유 거동 변화 및 흐름 특성의 변화를 살펴본 후, 그에 따라 계산된 성층 흐름의 척도가 되는 Flux Richardson 수($Ri_f$)와 Gradient Richardson 수($Ri_g$)를 근거로 타당한 ${\sigma}_c$의 범위를 산정하는 것을 목적으로 수행되었다. 부유사의 종류를 점착성 유사와 비점착성 유사로 구분하였으며 진동 흐름과 흐름 조건을 가정하고 1차원 연직 수치 모형을 이용하여 수치 실험을 수행하였다. 이 과정에서 ${\sigma}_c$가 난류 감소효과와 관계되는 상수인 것에 근거하여 부유사의 존재로 인한 난류 감소효과 고려 여부에 따른 흐름 특성의 변화를 살펴보았다. 그 결과, 흐름 조건에 관계없이 ${\sigma}_c$의 크기에 따라 부유 거동이 일관된 경향을 나타내는 것이 확인 되었으며 난류 감소효과를 고려하지 않는 경우 유속 및 난류 에너지가 과대 산정 되는 결과가 나타났다. 부유로 인한 성층화 조건을 형성하는 $Ri_f$$Ri_g$의 범위에 기초하여 결과를 분석하고 ${\sigma}_c$가 0.3에서 0.5의 범위에 해당될 때 성층 흐름 내 유사의 수직 혼합이 유효하게 계산된다는 결론이 도출되었다.

Abstract AI-Helper 아이콘AI-Helper

This study aims to investigating the effect of Schmidt number (${\sigma}_c$) on sediment suspension and hydrodynamics calculation. The range of ${\sigma}_c$ is also studied based on the flux Richardson number ($Ri_f$) and gradient Richardson number ($Ri_g$...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
부유사의 이동은 어떤 과정을 통해 발생하는가? 부유사의 이동은 이송과 확산 과정을 통해 지속적으로 발생하며 이송-확산 방정식으로 모형화된다. 이송-확산 방정식은 난류가 충분히 발달된 흐름에서 평균 흐름 방향으로의 이송을 의미하는 항과 무작위한 난류 및 분자운동에 의한 확산을 의미하는 항으로 구성된다.
플럭의 구조를 프랙탈 기하학을 통해 이해하는 목적은? 본 연구에서는 점착성 유사의 응집과정을 모형화하기 위해 플럭의 구조를 프랙탈 기하학을 통해 이해한다. Khelifa and Hill (2006)은 플럭 내부를 일차입자가 얼마나 조밀하게 채우고 있는가를 의미하는 프랙탈 차원을 지수법칙으로 표현하였다.
점착성 유사와 비점착성 유사에 공통적으로 구성한 계산영역은? 본 연구에서는 점착성 유사와 비점착성 유사를 대상으로 하며 흐름 조건을 주기를 가지는 진동 흐름(Oscillatory Flow)과 유속의 크기와 방향이 일정한 흐름(흐름, Current)으로 구분하여 수치 실험을 수행하였다. 두 경우 모두 하나의 크기가 4 mm인 격자를 적용하여 총 2.0 m 높이의 계산영역을 구성하였다. 비점착성 유사의 입자 크기는 매우 가는 모래에 해당되는 100 μm로 가정하였으며 일차입자의 크기는 4 μm를 적용하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (36)

  1. Amoudry, L., Hsu, T.-J., and Liu, P.L.-F. (2005). "Schmidt number and near-bed boundary condition effects on a two-phase dilute sediment transport model." Journal of Geophysical Research, Vol. 110, No. C9, pp. C09003. 

  2. Benoit, C.-R., and Beckers, J.-M. (2010). Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Elsevier. 

  3. Celik, I., and Rodi, W. (1988). "Modeling suspended sediment transport in nonequilibrium situations." Journal of Hydraulic Engineering, Vol. 114, No. 10, pp. 1157-1191. 

  4. Cellino, M. (1998). Experimental study of suspension flowin open channels. Ph.D. dissertation, Ecole Polytechnique Federale de Lausanne, France. 

  5. Cellino, M., and Graf, W. (1999). "Sediment-laden flow in open-channels under non-capacity and capacity conditions." Journal of Hydraulic Engineering, Vol. 125, No. 5, pp. 455-462. 

  6. Galland, J.-C., Laurence, D., and Teisson, C. (1997). Simulating turbulent vertical exchange of mud with a Reynolds stress model. Proceedings of the 4th Nearshore and Estuarine Cohesive Sediment Transport Conference INTERCO'94, JohnWiley & Sons, allingford, UK, ed. T.N. Burt, W.R. Parker and J. Watts, pp. 439-448. 

  7. Howard, L.N. (1961). "Note on a paper by J.W.Miles." Journal of Fluid Mechanics, Vol. 10, pp. 509-512 

  8. Hsu, T.-J., and Hanes, M. (2004). "Effects of wave shape on sheet flowsediment transport." Journal ofGeophysical Research, Vol. 109, No. C5, pp. C05025. 

  9. Khelifa, A., and Hill, P.S. (2006). "Models for effective density and settling velocity of flocs." Journal of Hydraulics Research, Vol. 44, No. 3, pp. 390-401. 

  10. Kranenburg, C. (1994). "The fractal structure of cohesive sediment aggregates." Estuarine Coastal Shlef Science, Vol. 39, No. 6, pp. 451-460. 

  11. Kundu, P.K. (1990). Fluid Mechanics. Academic Press, San Diego. 

  12. LEES, B.J. (1981). "Relationship between eddy viscosity of seawater and eddy diffusivity of suspended particles." Geo-Marine Letters, Vol. 1, No. 3-4, pp. 249-254. 

  13. Miles, J.W. (1961). "On the stability of heterogeneous shear flows." Journal of Fluid Mechanics, Vol. 10, No. 4, pp. 496-508. 

  14. Olsen, N.B., and Stokseth, S. (1995). "Three-dimensional numerical modeling of water flow in a river with large bed roughness." Journal of Hydraulic Research, Vol. 33, No. 4, pp. 571-581. 

  15. Ribberink, J.S., and Al-Salem, A. (1995). "Sheet flow and suspension of sand in oscillatory boundary layers." Coastal Engineering, Vol. 25, No. 3, pp. 205-225. 

  16. Son, M. (2009). Flocculation and transport of cohesive sediment. Ph.D. dissertation, University of Florida, Gainesville, Florida, United States. 

  17. Son, M., and Hsu, T.-J. (2008). "Flocculation model of cohesive sediment using variable fractal dimension." Environmental Fluid Mechanics, Vol. 8, No. 1, pp. 55-71. 

  18. Son, M., and Hsu, T.-J. (2009). "The effect of variable yield strength and variable fractal dimension on flocculation of cohesive sediment." Water Research, Vol. 43, No. 14, pp. 3582-3592. 

  19. Son, M., and Hsu, T.-J. (2011a). "The effects of flocculation and bed erodibility on modeling cohesive sediment resuspension." Journal of Geophysical Research, Vol. 116, No. C3, pp. C03021. 

  20. Son, M., and Hsu. T.-J. (2011b). "Idealized study on cohesive sediment flux by tidal asymmetry." Envronmental Fluid Mechanics, Vol. 11, No. 2, pp. 183-202. 

  21. Son, M., and Lee, G.-h. (2013). "On effects of skewed and asymmetric oscillatory flows on cohesive sediment flux: Numerical study."Water Resources Research, Vol. 49, No. 7, pp. 4409-4423. 

  22. Tennekes, H., and Lumley, J.L. (1994). A first course in turbulence, The MIT press. 

  23. Thrope, S.A. (1971). "Experiment on the instability of stratified shear flows: Miscible fluids." Journal of Fluid Mechanics, Vol. 46, No. 2, pp. 299-319. 

  24. Toorman, E. (2003). Validation of macroscopic modeling of particle-laden turbulent flows. Proceedings 6th Belgian National Congress on Theoretical and Applied Mechanics, Gent. 

  25. Turner, J.S. (1973). Buoyancy Effects in Fluids, Cambridge University Press. 

  26. Van Rijn, L.C. (1984). "Sediment transport, Part II: Suspended load transport." Journal of Hydraulic Engineering, Vol. 110, No. 11, pp. 1613-1641. 

  27. Van Rijn, L.C. (2007). "Unified View of Sediment Transport by current and waves. II: Suspended Transport." Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 668-689. 

  28. Wilcox, D.C. (1988). "Reassessment of the scale determining equation for advanced turbulence models." American Institute of Aeronautics and Astronautics Journal, Vol. 26 No. 11, pp. 1299-1310. 

  29. Winterwerp, J.C. (1998). "A simple model for turbulence induced flocculation of cohesive sediment." Journal of Hydraulic Research, Vol. 36, No. 3, pp. 309-326. 

  30. Winterwerp, J.C. (2001). "Stratification effects by cohesive and noncohesive sediment." Journal of Geophysical Research, Vol. 106, No. C10, pp. 22559-22574. 

  31. Winterwerp, J.C. (2002). "On the flocculation and settling velocity of estuarine mud." Continental Shelf Research, Vol. 22, No. 9, pp. 1339-1360. 

  32. Winterwerp, J.C. (2006). "Stratification effects by fine suspended sediment at low, medium, and very high concentrations." Journal of Geophysical Research, Vol. 111, No. C5, pp. C05012. 

  33. Winterwerp, J.C., and van Kesternen, W.G.M. (2004). Introduction to the physics of cohesive sediment in the marine environment. Elsevier. 

  34. Wu, W., Rodi, W., and Wenka, T. (2000). "3D Numerical Modeling of Flow and Sediment Transport in Open Channels." Journal ofHydraulic Engineering, Vol. 126, No. 1, pp. 4-15. 

  35. Yang, C-T. (2003). Sediment transport theory and practice. McGraw-Hill. 

  36. Yoon, J.-Y., and Kang, S.-K. (2005). "A numerical model of sediment-laden turbulent flow in an open channel." Canadian Journal of Civil Engineering, Vol. 32, No. 1, pp. 233-240. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로