• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Considerable research efforts have been explored attempting to enhance the thermal durability of thermal barrier coatings (TBCs) at the high operating temperatures of gas turbines. In this study, the suspension plasma spray (SPS) process was applied to produce TBCs with a segmented structure by using an yttria-stabilized zirconia (YSZ) suspension. Four different experiment sets were carried out by controlling the ratio between surface roughness of the bond coat and feed stock size ($R_a/D_{50}$) in order to examine the effect of $R_a/D_{50}$ ratio on the microstructure of SPS-prepared coatings. When the $R_a/D_{50}$ had a high value of 11.8, a deposited thick coating turned out to have a cone-type columnar microstructure. In contrast, at the low $R_a/D_{50}$ values of 2.9 and 0.18, a deposited thick coating appeared to have a dense, vertically-cracked microstructure. However, with the very low $R_a/D_{50}$ value of 0.05 the coating was delaminated.

참고문헌 (22)

  1. N. P. Padture, M. Gell, and E. H. Jordan, "Thermal Barrier Coatings for Gas-Turbine Engine Applications," Science, 296 [5566] 280-84 (2002). 
  2. R. A. Miller, "Current Status of Thermal Barrier Coatings-An Overview," Surf. Coat. Technol., 30 [1] 1-11 (1987). 
  3. C. G. Levi, "Emerging Materials and Processes for Thermal Barrier Systems," Curr. Opin. Solid State Mater. Sci., 8 [1] 77-91 (2004). 
  4. W. J. Lee, B. K. Jang, D. S. Lim, Y. S. Oh, S. Kim, H. T. Kim, H. Araki, H. Murakami, and S. Kuroda, "Hot Corrosion Behavior of Plasma Sprayed 4 mol% $Y_2O_3-ZrO_2$ Thermal Barrier Coatings with Volcanic Ash(in Korean)," J. Korean Ceram. Soc., 50 [6] 353-58 (2013). 
  5. A. Guignard, G. Mauer, R. Vassen, and D. Stover, "Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying," J. Therm. Spray Technol., 21 [3-4] 416-24 (2012). 
  6. A. Rabiei and A. G. Evans, "Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings," Acta Mater., 48 3963-76 (2000). 
  7. H. B. Guo, S. Kuroda, and H. Murakami, "Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings," J. Am. Ceram. Soc., 89 [4] 1432-39 (2006). 
  8. K. Van Every, M. J. M. Krane, R. W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, "Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties," J. Therm. Spray Technol., 20 [4] 817-28 (2011). 
  9. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, "Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings," J. Therm. Spray Technol., 17 [1] 115-23 (2007). 
  10. W. J. Lee, C. S. Kwon, S. Kim, Y. S. Oh, H. T. Kim, and D. S. Lim, "Fabrication and Characteristics of Yttria-Stabilized Zirconia (7.5 wt% $Y_2O_3-ZrO_2$) Coating Deposited via Suspension Plasma Spray(in Korean)," J. Kor. Powd. Met. Inst., 20 [6] 445-52 (2013). 
  11. P. Fauchais and A. Vardelle, "Solution and Suspension Plasma Spraying of Nanostructure Coatings," pp. 149-189 in Advanced Plasma Spray Applications. InTech., German, 2012. 
  12. R. Srinivasan, R. J. De Angelis, G. Ice, and B. H Davis, "Identification of Tetragonal and Cubic Structures of Zirconia Using Synchrotron X-Radiation Source," J. Mater. Res., 6 [6] 1287-92 (1991). 
  13. D. M. Lipkin, J. A. Krogstad, Y. Gao, C. A. Johnson, W. A. Nelson, C. G. Levi, and T. Troczynski, "Phase Evolution upon Aging of Air-Plasma Sprayed t'-Zirconia Coatings: ISynchrotron X-Ray Diffraction," J. Am. Ceram. Soc., 96 [1] 290-98 (2013). 
  14. G. Darut, F. Ben-Ettouil, A. Denoirjean, G. Montavon, H. Ageorges, and P. Fauchais, "Dry Sliding Behavior of Sub-Micrometer-Sized Suspension Plasma Sprayed Ceramic Oxide Coatings," J. Therm. Spray Technol., 19 [1-2] 275-85 (2009). 
  15. S. G. Terry, J. R. Litty, and C. G. Levi, "Evolution of Porosity and Texture in Thermal Barrier Coatings Grown by EBPVD," pp. 13-25 in Elevated Temperature Coatings: Science and Technology III. The Minerals, Metals and Materials Society, Warrendale, USA, 1999. 
  16. R. McPherson, "A Model for The Thermal Conductivity of Plasma-Sprayed Ceramic Coatings," Thin Solid Film., 112 [1] 89-95 (1984). 
  17. C. Delbos, J. Fazilleau, V. Rat, J. F. Coudert, P. Fauchais, and B. Pateyron, "Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation," Plasma Chem. Plasma Process., 26 [4] 393-414 (2006). 
  18. S. Kuroda and T. W. Clyne, "The Quenching Stress in Theramlly Sprayed Coatings," Thin. Solid. Films, 200 [1] 49-66 (1991). 
  19. R. Vassen, G. Kerkhof, and D. Stover, "Development of a Micromechanical Life Prediction Model for Plasma Sprayed Thermal Barrier Coatings," Mater. Sci. Eng. Struct. Mater., 303 [1-2] 100-09 (2001). 
  20. A.C. Karaoglanli, H. Dikici, and Y. Kucuk, "Effects of Heat Treatment on Adhesion Strength of Thermal Barrier Coating Systems," Eng. Fail. Anal., 32 16-22 (2013). 
  21. M. Gell, L. Xie, X. Ma, E. H. Jordan, and N. P. Padture, "Highly Durable Thermal Barrier Coatings Made by The Solution Precursor Plasma Spray Process," Surf. Coat. Technol., 177-178 97-102 (2004). 
  22. J. A. Ruud, A. Bartz, M. P. Borom, and C. A. Johnson, "Strength Degradation and Failure Mechanisms of Electron-Beam Physical-Vapor-Deposited Thermal Barrier Coatings," J. Am. Ceram. Soc., 84 [7] 1545-52 (2001). 

이 논문을 인용한 문헌 (1)

  1. Kwon, Chang-Sup ; Lee, Sung-Min ; Oh, Yoon-Suk ; Kim, Hyung-Tae ; Jang, Byung-Koog ; Kim, Seongwon 2014. "Structure and Thermal Conductivity of Thermal Barrier Coatings in Lanthanum/Gadolinium Zirconate System Fabricated via Suspension Plasma Spray" 한국표면공학회지 = Journal of the Korean institute of surface engineering, 47(6): 316~322 

DOI 인용 스타일