$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국 남서해안 도암만 표층퇴적물의 중금속 함량 및 분포 특성

Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.20 no.4, 2015년, pp.159 - 168  

조형찬 (목포대학교 해양자원학과) ,  조영길 (목포대학교 해양자원학과)

초록
AI-Helper 아이콘AI-Helper

한국 남서해 연안의 도암만에서 44개 표층퇴적물을 채취하여 총유기탄소(TOC), 총질소(TN) 및 중금속(Al, Fe, Mn, Cr, Cu, Ni, Pb, Zn)을 분석하였으며, 11개 시료에 대해서는 화학적 존재형태별 분석을 병행하였다. TOC(0.32~3.10%), TN(0.03~0.26%)은 주변 해역의 평균 수준이었고, C/N 비(7.9~11.9)에 근거할 때 육상기원 유기물의 영향이 반영된 일부 지역이 구분되었다. 중금속 함량은 대부분의 정점에서 해양퇴적물 주의기준(TEL) 이하였고, 화학적 존재형태별 함량은 광물격자부분에서 Cr, Cu, Ni 등이, 비광물격자부분에서 Mn, Pb가 총량의 절반을 상회하였다. 연구지역의 중금속 배경농도를 누적빈도곡선과 선형회귀분석에 의해 추정한 결과 Cu=11.8, Ni=23.1, Pb=26.8, Zn=76.6, Cr=56.7, Mn=585 mg/kg으로 계산되었으며, 이를 바탕으로 한 농축지수($I_{geo}$)에 근거해 국지적인 Mn 농축의 징후를 확인하였다. 그러나 농축지수와 존재형태비를 고려할 때 Zn, Pb도 환경변화에 따른 용출 가능성이 추정되었다.

Abstract AI-Helper 아이콘AI-Helper

Forty-four surface sediments from Doam Bay were analyzed for total organic carbon (TOC), total nitrogen (TN), total metal (Al, Fe, Mn, Cr, Cu, Ni, Pb, Zn) and further chemical partitioning of metals were carried out in some samples. The TOC (0.32~3.10%) and TN (0.03~0.26%) values of the samples were...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 중금속의 농축 혹은 오염 가능성에 대한 판단은 해당 지역 퇴적물의 배경농도를 설정하는 시도가 전제되어야 한다. 본 연구는 중금속의 총량과 아울러 탄산염, 산화물, 유기물, 광물격자 등 다양한 지화학성분과 결합된 중금속을 선별추출하여 그것의 존재형태를 파악하고, 이에 기초한 배경농도를 객관적 기법을 통해 제안함으로써 도암만 퇴적물의 중금속 농축을 검토하였다.
  • 그러나 근래 급속한 산업화와 도시화, 수산양식 및 어장확보에 따른 각종 난개발과 경제활동으로 갯벌의 축소 및 황폐화가 현실화되고 사회문제로 대두되었다. 이에 정부는 1999년에 갯벌을 연안습지로 지정하는 습지보존법을 발효시켜 갯벌의 보전 및 관리를 체계적이고 종합적으로 수립하기 위해 갯벌 현황 조사를 5년마다 시행하도록 법으로 명시하였다. 습지보존법에 따라 1999년부터 2003년까지 전국 갯벌을 대상으로 본격적인 조사가 추진되었으며, 이후 습지보호구역 지정을 목표로 2008년부터 2012년까지 선정된 지역에 대한 정밀조사가 이루어졌다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
우리나라 갯벌의 특징은? 우리나라 갯벌은 국토면적의 약 2%에 해당되는 총 2,489 km2로세계 5대 갯벌에 자리매김 되는 규모의 우월성뿐만 아니라 수산물의 생산 및 서식지, 정화, 심미 등 기능적 측면을 포함한 다양한 부가가치가 여러 연구를 통해 확인되고 강조되었다(Park, 1999; Kim et al., 2001; Choi, 2004).
갯벌의 축소 및 황폐화가 현실화되고 사회문제로 대두된 원인은? , 2001; Choi, 2004). 그러나 근래 급속한 산업화와 도시화, 수산양식 및 어장확보에 따른 각종 난개발과 경제활동으로 갯벌의 축소 및 황폐화가 현실화되고 사회문제로 대두되었다. 이에 정부는 1999년에 갯벌을 연안습지로 지정하는 습지보존법을 발효시켜 갯벌의 보전 및 관리를 체계적이고 종합적으로 수립하기 위해 갯벌 현황 조사를 5년마다 시행하도록 법으로 명시하였다.
도암만은 니질(M) 및 실트질(Z) 퇴적상을 기반으로 모래가 10% 이상 포함된 사니질(sM) 및 사실트질(sZ) 퇴적상이 주를 이루며, 하구 및 해안에 인접한 지역에 역니질((g)M) 및 역니사질((g)mS) 퇴적상이 분포한다고 본 이유는? 퇴적물의 평균입도는 3.3~7.6Ø 범위였으며, 전반적으로 실트와 점토가 우세하나 시료의 27%는 50% 이상의 모래 또는 약간의 자갈(<5%)을 포함하였다. 따라서 도암만은 니질(M) 및 실트질(Z) 퇴적상을 기반으로 모래가 10% 이상 포함된 사니질(sM) 및 사실트질(sZ) 퇴적상이 주를 이루며, 하구 및 해안에 인접한 지역에 역니질((g)M) 및 역니사질((g)mS) 퇴적상이 분포한다(Fig.
질의응답 정보가 도움이 되었나요?

참고문헌 (61)

  1. Ashagrie, Y., W. Zech and G. Guggenberger, 2005. Transformation of a Podocarpus falcatus dominated natural forest into a monoculture Eucalyptus globules plantationat Munesa, Ethiopia: soil organic C, N and S dynamics in primary particle and aggregatesize fractions. Agriculture, Ecosystems and Environ., 106: 89-98. 

  2. Bordovskiy, O.K., 1965. Accumulation and transformation of organic substances in marine sediments. Mar. Geol., 3: 3-114. 

  3. Cho, Y.G. and C.B. Lee, 2012. Heavy Metal contamination in surface sediments from Masan and Jinhae bay, southeast coast of Korea. J. KOSMEE, 15: 302?313. 

  4. Cho, Y.G. and K.Y. Park, 1998. Heavy metals in surface sediments of the Youngsan estuary, west coast of Korea. J. Environ. Sci., 7: 549?557. 

  5. Cho, Y.G., C.B. Lee and C.H. Koh, 2000. Heavy metals in surface sediments from Kwangyang bay, south coast of Korea. J. Korean Soc. Oceanogr., 5: 131?140. 

  6. Cho, Y.G., C.B. Lee and M.S. Choi, 1999. Geochemistry of surface sediments off the southern and western coasts of Korea. Mar. Geol., 159: 111?129. 

  7. Cho, Y.G., C.B. Lee, and M.S. Choi, 1994. Characteristics of heavy metal distribution in surface sediments from the South Sea of Korea. J. Korean Soc. Oceanogr., 29: 338?356. 

  8. Choi, M.C., H.B. Moon, S.S. Kim and J.S. Park, 2005. Evaluation of sewage pollution by Coprostanol in the sediments from Jinhae bay, Korea. J. Kor. Fish. Soc., 38: 118?128. 

  9. Choi, M.H., 2004. Economic value of the Korean mudflat wetland. J. Wetlands Res., 6: 89-104. 

  10. Crompton, T.R., 2015. Determination of Metals in Natural Waters, Sediments, and Soils. Elsevier, 318 pp. 

  11. Cuong, D.T., and J.P. Obbard, 2006. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Appl. Geochem. 21: 1335?1346. 

  12. Davutluoglu, O.I., G. Seckin, C.B. Ersu, T. Yilmaz and B. Sari, 2011. heavy metal content and distribution in surface sediments of the Seyhan river, Turkey. J. Environ. Management, 92: 2250?2259. 

  13. Dong, D., Y.M. Nelson, L.W. Lion, M.L. Shuler and W.C. Ghiorse, 2000. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extraction: new evidence for the importance of Mn and Fe oxides. Water Res., 34: 427?436. 

  14. Folk, R.L. and W.C. Ward, 1957. Brazos river bar; A study in the significance of grain size parameter, J. Sed. Petrol., 27: 3-26. 

  15. Folk, R.L., 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas, 182 pp. 

  16. Forstner, U. and W. Salomons, 1980. Trace metal analysis on polluted sediments. I. Assessment of sources and intensities. Environ. Technol. Lett., 1: 494-505. 

  17. Ganeshram, R.S., S.E. Calvert, T.F. Pedersen and G.L. Cowie. 1999. Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: implications for hydrocarbon preservation. Geochim. Cosmochim. Acta, 63: 1723-1734. 

  18. Gibbs, R.J. 1977. Transport phase of transition metals in the Amazon and Yukon rivers. Geol. Soc. Am. Bull., 88: 829-843. 

  19. Hong, J.T., B.S. Na, J.Y. Kim, Y.K. Koh, S.T. Youn, S.E. Shin, H.G. Kim, B.C. Moon and K.H. Oh, 2007. Sedimentary geochemical characteristics and environmental impact of sediments in Tamjin river and Doam bay. J. Environ. Impact Assess. 16: 393-405. 

  20. Horowitz, A.J., 1985. A Primer on Trace Metal Sediment Chemistry. U.S. Geological Survey, Denver, pp. 36?46. 

  21. Horowitz, A.J., 1991. A Primer on Sediment-Trace Element Chemistry. Lewis Publishers, INC., 136 pp. 

  22. Hwang, D.W., H.G. Jin, S.S. Kim, J.D. Kim, J.S. Park and S.G. Kim, 2006. Distribution of organic matters and metallic elements in the surface sediments of Masan harbor, Korea. J. Kor. Fish. Soc., 39: 106?117. 

  23. Ingram, R.L., 1971. Sieve Analysis. In: Procedures in Sedimentary Petrology, edited by Carver, R.E., Wiley-Inter Science, New York, 49-67. 

  24. Ju, J.M., C.E. Chung and H.B. Yoo, 2002. Dynamics of zooplankton community in upper Tamjin river system, Korea. J. Sci. Edu. Chonnam Nat'l Univ., 26: 201?224. 

  25. Kim, D.H., G.S. Kim and H.S. Cho, 2001. Estimate to the capacity of self purification in tidal flats of Kangjin bay, Korea. Collection of Dissertations of Mokpo National Maritime University, pp. 173?184. 

  26. Kim, J.B., 2005. Role of Intertidal flats for the supply of food of fisheries organisms in Doam-Bay and near naro-do of the South Sea of Korea: Community Composition and Food Sources. Ph.D. Thesis, Pukyong National University, 166 pp. 

  27. Kitano, Y. and R. Hujiyoshi, 1980. Selective chemical leaching of cadmium, copper, manganese and iron in marine sediments. Geochem J., 14: 133?122. 

  28. Klamer, J.C., W.J.M. Hegeman and F. Smedes, 1990. Comparison of grain size correction procedures for organic micropollutants and heavy metals in marine sediments. Hydrobiologia, 208: 213?220. 

  29. Koh, Y.K., S.T. Toun and K.H. Oh, 2008. Sponge spicules and silicoflagellates in surface sediments of Doam bay, Jeonnam Province. J. Sci. Edu. Chonnam Nat'l Univ., 32: 83?91. 

  30. Lee, S. and J.A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol., 53: 1298?1303. 

  31. Lee, S.H. and J.A. Fuhrman, 1987. Relationship between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiology, 53: 1298?1303. 

  32. Li, X. and I. Thornton, 2001. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl. Geochem., 16: 1693?1706. 

  33. Lim, D.I., J.Y. Choi, H.S. Jung, H.W. Choi and Y.O. Kim, 2007. Natural background level analysis of heavy metal concentration in Korean coastal sediments. Ocean & Polar Res., 29: 379?389. 

  34. Liu, H.C., C.F. You, B.J. Huang and C.A. Huh, 2013. Distribution and accumulation of heavy metals in carbonate and reducible fraction of marine sediment from offshore mid-western Taiwan. Mar. Pollut. Bull., 73: 37?46. 

  35. Luoma, S., 1990. Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Heavy Metals in the Marine Environment, edited by Furness R.W. and P.S., Rainbow, CRC Press Inc., pp. 51-66. 

  36. Martin, J.M. and M. Whitfield, 1983. The significance of the river input of chemical elements to the ocean. In: Trace Metals in Sea Water, edited by Wong, C.S., E.A. Boyle, K.W. Bruland, J.D. Burton and E.D. Goldberg, New York: Plenum, pp. 265?296. 

  37. Matschullat, J., R. Ottenstein and C. Reimann, 2000. Geochemical background-can we calculate it?, Environ. Geol., 39: 990?1000. 

  38. Mayer, L.M., 1994. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol., 114: 347-363. 

  39. Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol., 114: 289-302. 

  40. Ministry of Environment, 1999. Methodologies for the Quality Assessment of Benthic Environment of Korean Coastal Waters. 786 pp. 

  41. MLTM(Ministry of Land, Transport and Maritime Affairs), 2010. Maritime Environment Pollutant' Testing Method, pp. 363?365. 

  42. MLTM(Ministry of Land, Transport and Maritime Affairs), 2010. National Survey of Coastal Wetland: Precision Investigation, pp. 29?52. 

  43. MOF(Ministry of Oceans and Fisheries), 2000. Studies for Sustainable Use of Tidal Flats in Korea(II), pp. 97?99. 

  44. MOLIT(Ministry of Land, Infrastructure and Transport), 1994. Technical Reports, 1101: 132?149. 

  45. Montoura, R.F., C.A. Dickson and J.P. Riley, 1978. The complexation of metals with humic materials in natural waters. Estuar. Coast. & Mar. Sci., 6: 387?408. 

  46. Muller, G., 1979. Schwermetalle in den sedimenten des Rheins Vernderungen seit 1971. Umschau, 79: 778?783. 

  47. Na, B.S., 2002. Distribution and Geochemical Characteristics of Surface Sediments in Doam Bay. Graduate School, Chonnam Nat,l Univ., Gwangju, 88 pp. 

  48. Nam, D.W., S.S. Cha, C.G. Choi, J.B. Lee and H.Y. Lee, 2009. Ichthyofauna and habitat type of the fish in Tamjin river system, Korea. J. Environ. Sci., 18: 1001?1010. 

  49. Newman, B.K. and R.J. Watling, 2007. Definition of baseline metal concentration for assessing metal enrichment of sediment from the south-eastern Cape coastline of South Africa. Water SA, 33: 675?691. 

  50. Park, T.Y., 1999. A Study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands. J. Kor. Environ. Res. Tech., 2: 64?73. 

  51. Rath, P., U.C. Panda, D. Bhatta and D.C. Sahu, 2009. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments-A case study: Brahmani and Nandira rivers, India. J. Hazard. Mater., 163: 632?644. 

  52. Salomons, W. and U. Forstner, 1984. Metals in the Hydrocycle. Springer-Verlag, Berlin, 349 pp. 

  53. Schropp, S., G. Lewis, H. Windom, J. Ryann, F. Caldner and L. Burney, 1990. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries, 13: 227?235. 

  54. Siegel, F.R., 1995. Environmental geochemistry in development planning: An example from the Nile delta, Egypt. Geochem. Exploration, 55: 265?273. 

  55. Summer, J.K., T.L. Wade, V.D. Engle and Z.A. Malaeb, 1996. Normalization of metal concentration in estuarine sediments from the Gulf of Mexico. Estuaries, 19: 581?594. 

  56. Teng, Y.G. and Y.P. Huang, 2009. Geochemical baseline of trace elements in the sediment in Dexing area, South China. Environ. Geol., 57: 1649?1660. 

  57. Turekian K.K. and K.H. Wedepohl, 1961. Distribution of the elements in some major units of the earth's crust, Geol. Soc. Am. Bull., 72: 175?192. 

  58. Volkman, J.K., D. Rohjans, J. Rullkotter, B.M. Scholz-Bottcher and G. Liebezeit, 2000. Sources and diagenesis of organic matter in tidal flat sediments from the German Wadden Sea. Cont. Shelf Res., 20: 1139-1158. 

  59. Wang, S., Y, Jia, S. Wang, X. Wang, H. Wang, Z. Zhao and B. Liu, 2010. Fractionation of heavy metals in shallow marine sediments from Jinzhou bay, China. J. Environ. Sci., 22: 23?31. 

  60. Woo, J.S., H.S. Choi, H.J. Lee and T.H. Kim, 2014. Organic matter in the sediments of Youngsan river estuary: Distribution and sources. J. Environ. Sci. Int., 23: 1375?1383. 

  61. Yang, Y., F. Chen, L. Zhang, J. Liu, S. Wu and M. Kang, 2012. Comprehensive assessment of heavy metal contamination in sediment of the Pearl river estuary and adjacent shelf. Mar. Pollut. Bull., 64: 1947?1955. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트