$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

자동차용 파워 모듈 패키징의 은 소재를 이용한 접합 기술
A Review of Ag Paste Bonding for Automotive Power Device Packaging 원문보기

마이크로전자 및 패키징 학회지 = Journal of the Microelectronics and Packaging Society, v.22 no.4, 2015년, pp.15 - 23  

노명훈 (오사카 대학교 접합과학연구소) ,  (오사카 대학교 접합과학연구소) ,  정재필 (서울시립대학교 공과대학 신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

Lead-free bonding has attracted significant attention for automotive power device packaging due to the upcoming environmental regulations. Silver (Ag) is one of the prime candidates for alternative of high Pb soldering owing to its superior electrical and thermal conductivity, low temperature sinter...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 금속 나노 분말로 제조한 페이스트를 이용할 경우 금속의 녹는점보다 낮은 200~300℃에서 소결이 가능하고, 접합 후의 녹는점은 벌크 금속과 동일하기 때문에 파워 모듈에 사용되는 칩의 작동 온도인 200~250℃ 보다 높다. 따라서 본고에서는 금속 페이스트를 이용한 소결 기술 중 현재 가장 활발히 연구가 진행되고 있는 은 페이스 트를 이용한 접합 기술에 대해 기술하고자 한다. 은 페이 스트를 이용한 소결 접합 기술은 공정 중 압력을 인가하는 가압 접합(Pressure bonding)과 대기압에서 진행하는 무가압 접합(Pressureless or pressure-free bonding)으로 분류 할 수 있다.
  • 이는 유연 솔더를 대체할 수 있는 접합 소재가 아직 개발되지 않았기 때문이다. 본고에서는 유연 솔더의 대체 소재로서 현재 연구 개발 중인 은 페이스트를 이용한 접합 기술에 대해 소개하였다. 은 페이스트는 저온 소결 특성과 우수한 전기 및 열전도도 때문에 유연 솔더를 대체할 수 있는 가능성이 높은 소재 중 하나이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
파워 모듈에는 어떤 것들이 있는가? 1-3) 전력반도체는 시스템 반도체나 메모리 반도체와 비교해서 고내압, 고전류, 고주파수화 되어있다. 파워 모듈은 전력반도체의 한 유형으로 MOSFETs (Metal oxide semiconductor field effect transistor) 모듈, IGBT(Insulated gate bipolar transistor) 모듈, Diode 모듈, Thyristors 모듈 등이 있다.4) Fig.
차량에 장착되는 파워 모듈에게 요구되는 성능은 무엇인가? 1는 하이브리드차의 전기구동부품을 보인 것으로, 파워 모듈이 주로 장착되는 인버터/컨버터 역시 핵심 부품 중 하나이다.5) 차량에 장착되는 파워 모듈은 안전과 매우 밀접한 관계가 있기 때문에 높은 수준의 내구성과 신뢰성이 요구된다.6,7) Fig.
은(Ag)과 구리(Cu) 나노 분말로 제조한 페이스트의 장점은? 10-18) 이 중 금속 페이스트를 이용한 소결 기술은 은(Ag)과 구리(Cu) 나노 분말로 제조한 페이스트를 이용하여 칩과 기판, 기판과 기판을 접합하는 것이 대표적이다. 금속 나노 분말로 제조한 페이스트를 이용할 경우 금속의 녹는점보다 낮은 200~300oC에서 소결이 가능하고, 접합 후의 녹는점은 벌크 금속과 동일하기 때문에 파워 모듈에 사용되는 칩의 작동 온도인 200~250oC 보다 높다. 따라서 본고에서는 금속 페이스트를 이용한 소결 기술 중 현재 가장 활발히 연구가 진행되고 있는 은 페이스 트를 이용한 접합 기술에 대해 기술하고자 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (47)

  1. R. Khazaka, L. Memdizabal, D. Hevry, and R. Hanna, "Survey of High-Temperature Reliability of Power Electronics Packaging Components", IEEE Transactions on Power Electronics, 30(5), 2456-2464 (2015). 

  2. Z. Liang, Status and Trend of Automotive Power Module Packaging, in Proc. of the 24th International Symposium on Power Semiconductor Devices & ICs, Bruge, Belgium, June 325-331 (2012). 

  3. J. Millan, "A Review of WBG Power Semiconductor Devices", in 2012 International Semiconductor Conference (CAS), 57-66 (2012). 

  4. J. M. Hornberger, D. Dilio, R. M. Schupbach, A. B. Losetter and H. A. Mantooth, A High-Temperature Multichip Power Module (MCPM) Inverter Utilizing Silicon Carbide (SiC) and Silicon on Insulater (SOI) Electronics, Proc. 37th IEEE Power Electronics Specialists Conference (PESC), Jeju, 1, IEEE Power Electronics Society (PELS) (2006). 

  5. http://www.mobis.co.kr 

  6. A. Y. Kim and W. S. Hong, "Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine", Journal of KWJS, 32(3), 74-80 (2014) (in Korean). 

  7. A. Y. Kim, C. M. Oh and W. S. Hong, "Validation of Sequence Test Method of Pb-free Solder Joint for Automotive Electronics", Journal of KWJS, 33(3), 25-31 (2015) (in Korean). 

  8. Power Packaging Technology Trends & Market Expectations report, April 2015, Yole Developpement. 

  9. A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale and Stuart Muchlejohn, "Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering", Journal of Materials Engineering and Performance, 21(5), 629-637 (2012). 

  10. T. A. Tollefsen, A. Larsson, O. M. Loovvik and K. E. Aasmundtveit, "High temperature interconnect and die attach technology: Au-Sn SLID bonding, IEEE Transactions on Components", Packaging and Manufacturing Technology, 3(6), 904-914 (2013). 

  11. R. I. Rodriguez, D. Ibitayo and P. O. Quintero, "Thermal stability characterization of the Au-Sn bonding for high-temperature applications", IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(4), 549-557 (2013). 

  12. M. Nahavandi, M. A. A. Hanim, Z. N. Ismarrubie, A. Hajalilou, R. Rohaizuan and M. Z. S. Fadzli, "Effects of Silver and Antimony Content in Lead-free Hig-temperature Solders of Bi-Ag and Bi-Sb on Copper Substrate", Journal of Electronic Materials, 43(2), 579-585 (2014). 

  13. J. N. Lalena, N. F. Dean and M. W. Weiser, "Experimental investigation of Ge-Doped Bi-11Ag as a new Pb-free solder alloy for power die attachment", Journal of Electronic Materials, 31(11), 1244-1249 (2002). 

  14. A. Sharif, C. L. Gan and Z. Chen, "Transient liquid phase Agbased solder technology for high-temperature packaging applications", Journal of Alloys and Compounds, 587, 365-368 (2014). 

  15. A. Lis and C. Leinenbach, "Effect of Process and Service Conditions on TLP-Bonded Components with (Ag, Ni-)Sn interlayer Combinations", Journal of Electronic Materials, 44(11), 4576-4588 (2015). 

  16. T. Yamakawa, T. Takenmoto, M. Shimoda, H. Nishikawa, K. Shiokawa and N. Terada, "Influence of Joining Conditions on Bonding Strength of Joints: Efficacy of Low-temperature Bonding using Cu Nanoparticle Paste", Journal of Electronic Materials, 42(6), 1260-1267 (2013). 

  17. K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li and C. P. Wong, "Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications", Journal of Electronic Materials, 34(2), 168-175 (2005). 

  18. Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita and Eiichi Ide, "Interfacial Bonding Mechanism using Silver Metallo-Organic Nanoparticles to Bulk Metals and Observation of Sintering Behavior", Materials Transactions, 49(7), 1537-1575 (2008). 

  19. H. Schwarzbauer and R. Kuhnert, "Novel Large Area Joining Technique for Imrpoved Power Device Performance", IEEE Trans. Industry Applications, 27(3), 93-95 (1991). 

  20. K. S. Siow, "Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?", Journal of Electronic Materials, 43(4), 947-961 (2014). 

  21. K. S. Siow, "Mechanical Properties of Nano-Silver Joints as Die Attach Materials", Journal of Alloys Compound, 514, 6-19 (2012). 

  22. E. Ide, S. Angata, A. Hirose and K. F. Kobayashi, "Metal- Metal Bonding Process using Ag Metallo-Organic Nanoparticles", Acta Materialia, 53, 2385-2393 (2005). 

  23. A. Nel, T. Xia, L. Madler and N. Li, "Toxic Potential of Materials at the Nanolevel", Science, 311(5761), 622-627 (2006). 

  24. E. Ide, A. Hirose and K. F. Kobayashi, "Influence of Bonding Condition on Bonding Process using Ag Metallo-Organic Nanopartices for High Temperature Lead-free Packaing", Materials Transactions, 47(1), 211-217 (2006). 

  25. T. Morita, E. Ide, Y. Yasuda, A. Hirose and K. Kobayashi, "Study of Bonding Technology Using Silver Nanoparticles", Japanese Journal of Applied Physics, 47(8), 6615-6622 (2008). 

  26. H. Ogura, M. Maruyama, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura and S. Isoda, "Carboxylate-Passivated Silver Nanoparticles and Their Application to Sintered Interconnection: A Replacement for High Temperature Lead-Rich Solders", Journal of Electronic Materials, 39(8), 1233-1240 (2010). 

  27. T. G. Lei, J. N. Calata and G. Q. Lu, "Low-Temperature Sintering of Nanoscale Silver Paste for Attaching Large-Area (>100 $mm^2$ ) Chips", IEEE Transactions on Components and Packaging Technology, 33(1), 98-104 (2010). 

  28. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K. S. Kim and M. Nogi, "Low-temperautre Low-pressure die attach with hybrid silver particle paste", Microelectronics Reliability, 52, 375-380 (2012). 

  29. H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada and M. Saito, "Microscale Ag particle paste for sintered joints in high-power devices", Materials Letters, 161, 231-233 (2015). 

  30. S. Sakamoto, T. Sugahara and K. Suganuma, "Microstructural Stability of Ag Sinter Joining in Thermal Cycling", Journal of Materials Science: Materials in Electronics, 24, 1332-1340 (2013). 

  31. Military of the United States Standards-Test Methods for Electronic Circuits (MIL-STD-833). 

  32. Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo and X. Li, "Investigation of rare earth-doped BiAg High-Temperature Solders", Journal of Materias Science: Materials in Electronics, 21, 879-881 (2010). 

  33. A. Sharif, C. L. Gan and Z. Chen, "Transient Liquid Phase Ag-based Solder Technology for High-temperature Packaging Applications", Journal of Alloys and Compounds, 587, 365-368 (2014). 

  34. G. Skandan, H. Hahn, B. H. Kear, M. Roddy and W. R. Cannon, "The Effect of Applied Stress on Densification of Nanostructured Zirconia during Sinter-forging", Materials Letters, 20, 302-309 (1994). 

  35. W. H. Li, P. S. Lin, C. N. Chen, T. Y. Dong, C. H. Tsai, W. T. Kung, J. M. Song, Y. T. Chiu and P. F. Yang, "Low-Temperature Cu-to-Cu Bonding using Silver Nanoparticles Stabilised by Satrated Dodecanoic Acid", Materials Science & Engineering, A 613, 372-378 (2014). 

  36. J. Yan, G. Zou, A. P. Wu, J. Ren, J. Yan, A. Hu and Y. Zhou, "Pressureless Bonding Process using Ag Nanoparticle Paste for Flexible Electronics Packaing", Scripta Materialia, 66, 582-585 (2012). 

  37. S. Sakamoto, S. Nagao and K. Suganuma, "Thermal Fatigue of Ag Flake Sintering Die-attachment for Si/SiC Power Devices", Journal of Materials Science: Materials in Electronic, 24, 2593-2601 (2014). 

  38. T. Wang, X. Chen, G. Q. Lu and G. Y. Lei, "Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection", Journal of Electronic Materials, 36(10), 1333-1340 (2007). 

  39. Y. Tan, X. Li and X. Chen, "Fatigue and Dwell-fatigue Behavior of Nano-silver Sintered Lap-Shear Joint at Elevated Temperature", Microelctronics Reliability, 54, 648-653 (2014). 

  40. NBE Tech, LLC., 

  41. W. Schmitt, M. Schafer and H. W. Hagedorn, "Controlling the Porosity of Metal Paste for Pressure Free", Low Temperature Sintering Process, US2010/0051319A1, W. C. Heraeus, Germany (2010). 

  42. M. Kuramoto, S. Ogawa, M. Niwa, K. S. Kim and K. Suganuma, "Die Bonding for a Nitride Light-Emitting Diode by Low- Temperature Sintering of Micrometer Size Silver Particles", IEEE Transactions on Components and Packaging Technologies, 33(4), 801-808 (2010). 

  43. R. M. German, "Prediction of Sintered Density for Bimodal Powder Mixtures", Metallurgical Transactions A, 23A, 1455-1465 (1992). 

  44. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, H. Kakiuchi and Y. Yosida, "A Low-Temperature Pressureless Bonding Process Using a Trimodal Mixture System of Ag Nanoparticles", Journal of Electronic Materials, 40(12), 2398-2402 (2011). 

  45. W. D. Kingery, "Densification during Sintering in the Presence of a Liquid Phase-I", Theory, Journal of Applied Physics, 30(3), 301-307 (1951). 

  46. Y. C. Lin and J. H. Jean, "Constrained Sintering of Silver Circuit Paste", Journal of the American Ceramic Society, 87(2), 187-191 (2004). 

  47. S. Wang, M. Li, H. Ji and C. Wang, "Rapid Pressureless Lowtemperature Sintering of Ag Nanoparticles for High-Power Density Electronic Packaging", Scripta Materialia, 69, 789-792 (2013). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로