$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

해양무척추동물을 활용한 골 조직 재생용 바이오 메디컬 소재
Biomedical Materials for Regenerating Bone Tissue Utilizing Marine Invertebrate 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.48 no.1, 2015년, pp.1 - 15  

오건우 (부경대학교 의공학과) ,  정원교 (부경대학교 의공학과)

Abstract AI-Helper 아이콘AI-Helper

Tissue engineering is an emerging, innovative technology to improve or replace the biological functions of damaged tissues and organs. Scaffolds are important materials for tissue engineering as they support cell attachment, migration, and differentiation. Marine sponges naturally contain scaffolds ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 논문에서는 이처럼 특수한 수생환경에서 서식하는 해양무척추동물을 대상으로 하여 이들의 골격과 해양무척추동물 유래 유용물질을 이용하여 조직공학으로의 적용 및 가능성에 대한 연구결과들에 대하여 고찰하고자 한다. 또한, 해양무척추동물로부터의 유용물질 및 이를 이용한 골조직재생에 관한 최근 연구들을 Table 1에 제시하였다.
  • 이러한 문제로부터 벗어나고자 천연 및 합성물질을 이용하여 조직 및 장기의 기능을 대체할 수 있도록 도와주는 조직공학이 높은 관심과 더불어 꾸준한 발전을 이루고 있으며, 육상자원의 한계와 안전성의 문제에서 벗어나고자 해양수산생명자원으로의 관심이 높아지고 있다. 따라서, 이 논문에서는 해양수산생명자원 중에서 해양무척추동물 유래의 의공학적 유용소재를 이용한 골조직재생으로 이용 가능한 세포담체의 제작과 활용 및 가능성에 대하여 최근 연구내용들을 살펴보았으며, 키틴 및 콜라겐 골격의 추출을 통한 해면유래 세포담체의 제작, 탄산칼슘을 골격으로 형성하고 있는 산호 및 갑오징어 뼈를 이용한 세포담체의 제작, 그리고 생체적합성과 생분해성의 특징으로 인하여 조직 재생에 이용되고 있는 콜라겐을 해파리로부터 추출한 연구들을 바탕으로 의공학적 유용소재로의 활용 및 가능성에 대하여 기술하였다. 해양유래 생물들은 육상생물과 비교하여 월등히 많은 수의 종들이 살고 있음에도 불구하고, 현재까지 우리가 밝혀낸 종들은 10%에도 미치지 않는 극히 소수이며, 아직도 정확히 어느 정도의 생물들이 살아가고 있는지는 추측만 하고 있을 뿐이다.
  • (2009)은 Chrysaora sp. 와 Catostylus tagi 에서 효소를 이용한 콜라겐추출을 통하여 해양수산생물유래 콜라겐의 활용가능성을 제시 하였다. 그리고, Rhopilema esculentum로부터 효소처리 추출방법으로 획득한 콜라겐을 이용한 세포담체를 제작하여 조직재생으로의 활용가능성을 제시한 연구도 보고 되어졌다(Hoyer et al.
  • 이 논문에서는 해양수산생물 중에서 해양무척추동물을 이용한 골조직재생의 활용 및 적용 가능성에 대하여 알아보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
동물계의 구성은 어떻게 되는가? 동물계(animal kingdom)에는 척추동물(vertebrate)과 무척추 동물(invertebrate)로 이루어져 있으며, 각각 동물계의 약 3%와 97%를 차지하고 있다(Buchsbaum et al., 2013).
골은 무엇인가? 골(bone)은 우리 몸에서 석회화(mineralization)로 이루어진 대표적인 조직으로, 구조적 기능 및 필수대사과정을 담당한다. 먼저 구조적 기능으로는 척수(bone marrow)나 뇌(brain)처럼 생명현상에 필수적인 조직들을 외부 충격으로부터 보호해주며, 근육이 부착 할 수 있는 지지대의 역할을 하여 근운동(muscular movement)을 할 수 있도록 도와준다.
골의 필수대사기능은 무엇인가? 먼저 구조적 기능으로는 척수(bone marrow)나 뇌(brain)처럼 생명현상에 필수적인 조직들을 외부 충격으로부터 보호해주며, 근육이 부착 할 수 있는 지지대의 역할을 하여 근운동(muscular movement)을 할 수 있도록 도와준다. 두번째 기능으로는 필수대사기능으로, 칼슘(calcium)과 인산염(phosphate)의 조절을 통하여 혈액의 항상성(serum homeostasis)을 유지할 수 있도록 도와준다(Hadjidakis and Androulakis, 2006). 이러한 골은 여러 가지 호르몬이나 물리적인 자극에 의해 뼈를 형성하는 조골세포(osteoblast)와 뼈를 흡수하여 제거하는 파골세포(osteoclast)의 상호작용에 의하여 일생 동안 재형성과정(remodeling)을 거친다(Walsh and Gravallese, 2010).
질의응답 정보가 도움이 되었나요?

참고문헌 (109)

  1. Addad S, Exposito JY, Faye C, Ricard-Blum S and Lethias C. 2011. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 9, 967-983. http://dx.doi.org/10.3390/md9060967. 

  2. Akram M, Ahmed R, Shakir I, Ibrahim WAW and Hussain R. 2014. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci 49, 1461-1475. http://dx.doi.org/10.1007/s10853-013-7864-x. 

  3. Al-Salihi K. 2009. In vitro evaluation of Malaysian natural coral porites bone graft substitutes (CORAGRAF) for bone tissue engineering: A preliminary study. Braz J Oral Sci 8, 210-216. 

  4. Battistella E, Mele S, Pietronave S, Foltran I, Lesci G, Foresti E, Roveri N and Rimondini L, 2010. Transformed cuttlefish bone scaffolds for bone tissue engineering. Adv Mater Res 89, 47-52. http://dx.doi.org/10.4028/www.scientific.net/AMR.89-91.47. 

  5. Barzideh Z, Latiff AA, Gan CY, Benjakul S and Karim AA. 2014. Isolation and characterisation of collagen from the ribbon jellyfish (Chrysaora sp.). Int J Food Sci Tech 49, 1490-1499. http://dx.doi.org/10.1111/ijfs.12464. 

  6. Buchsbaum R. 2013. Introduction: Sorting out living things. In: Animals without backbones. Buchsbaum M, Pearse J and Pearse V, eds. University of Chicago Press, Chicago, U.S.A., 3-14. 

  7. Boyle WJ, Simonet WS and Lacey DL. 2003. Osteoclast differentiation and activation. Nature 423, 337-342. http://dx.doi. org/10.1038/nature01658. 

  8. Brunner E, Ehrlich H, Schupp P, Hedrich R, Hunoldt S, Kammer M, Machill S, Paasch S, Bazhenov V and Kurek D. 2009. Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168, 539-547. http://dx.doi.org/10.1016/j.jsb.2009.06.018. 

  9. Byrne M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. In: Oceanography and Marine Biology: An Annual Review. Gibson R, Atkinson R, Gordon J, Smith I and Hughes D, eds. CRE press, London, U.K., 1-42. 

  10. Cadman J, Zhou S, Chen Y, Li W, Appleyard R and Li Q. 2010. Characterization of cuttlebone for a biomimetic design of cellular structures. Acta Mech Sinica-PRC 26, 27-35. http://dx.doi.org/10.1007/s10409-0090310-2. 

  11. Calejo M, Morais Z and Fernandes A. 2009. Isolation and biochemical characterisation of a novel collagen from Catostylus tagi. J Biomat Sci-Polym E 20, 2073-2087. http://dx.doi.org/10.1163/156856208X399125. 

  12. Census of Marine Life Press Release. 2010. First census shows life in Planet Ocean is richer, more connected, more altered than expected. Retrieved from http://www.coml.org/pressreleases- 2010 on October 4. 

  13. Dai J, Kitagawa Y, Zhang J, Yao Z, Mizokami A, Cheng S, Nor J, McCauley LK, Taichman RS and Keller ET. 2004. Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res 64, 994-999. http://dx.doi.org/10.1158/0008-5472.CAN-03-1382. 

  14. de Peppo GM, Sladkova M, Sjovall P, Palmquist A, Oudina K, Hyllner J, Thomsen P, Petite H and Karlsson C. 2012. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor. Tissue Eng Part A 19, 175-187. http://dx.doi.org/10.1089/ten.tea.2011.0412. 

  15. Ding JF, Li YY, Xu JJ, Su XR, Gao X and Yue FP. 2011. Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation. Food Hydrocolloid 25, 1350-1353. http://dx.doi.org/10.1016/j.foodhyd.2010.12.013. 

  16. Dogan E and Okumus Z. 2014. Cuttlebone used as a bone xenograft in bone healing. Vet Med-Czech 59, 254-260. 

  17. Duan R, Zhang J, Du X, Yao X and Konno K. 2009. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem 112, 702-706. http://dx.doi.org/10.1016/j.foodchem.2008.06.020. 

  18. Dutta A, Fermani S, Arjun Tekalur S, Vanderberg A and Falini G. 2011. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions. J Cryst Growth 336, 50-55. http://dx.doi.org/10.1016/j.jcrysgro. 2011.09.013. 

  19. Dvir T, Timko BP, Kohane DS and Langer R. 2011. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6, 13-22. http://dx.doi.org/10.1038/nnano.2010.246. 

  20. Ehrenfreund-Kleinman T, Golenser J and Domb AJ. 2005. Polysaccharide Scaffolds for Tissue Engineering. In: Scaffolding in tissue engineering. Ma PX and Elisseeff J, eds. CRC press, New York, U.S.A., 27-44. 

  21. Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S and Worch H. 2007. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J Exp Zool Part B 308, 347-356. http://dx.doi.org/10.1002/jez.b.21156. 

  22. Ehrlich H, Simon P, Carrillo-Cabrera W, Bazhenov VV, Botting JP, Ilan M, Ereskovsky AV, Muricy G, Worch H and Mensch A. 2010a. Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chem Mater 22, 1462-1471. http://dx.doi.org/10.1021/cm9026607. 

  23. Ehrlich H, Ilan M, Maldonado M, Muricy G, Bavestrello G, Kljajic Z, Carballo J, Schiaparelli S, Ereskovsky A and Schupp P. 2010b. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int J Biol Macromol 47, 132-140. http://dx.doi.org/10.1016/j.ijbiomac.2010.05.007. 

  24. Ehrlich H, Steck E, Ilan M, Maldonado M, Muricy G, Bavestrello G, Kljajic Z, Carballo J, Schiaparelli S and Ereskovsky A. 2010c. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. International journal of biological macromolecules 47, 141-145. http://dx.doi.org/10.1016/j.ijbiomac.2010.05.009. 

  25. Ehrlich H, Kaluzhnaya OV, Brunner E, Tsurkan MV, Ereskovsky A, Ilan M, Tabachnick KR, Bazhenov VV, Paasch S and Kammer M. 2013. Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris. J Struct Biol 183, 474-483. http://dx.doi.org/10.1016/j.jsb.2013.06.015. 

  26. Erwin PM and Thacker RW. 2007. Phylogenetic analyses of marine sponges within the order Verongida: a comparison of morphological and molecular data. Invertebr Biol 126, 220-234. http://dx.doi.org/10.1111/j.1744-7410.2007.00092.x. 

  27. Eskandar H. 2008. The use of coral as a graft in a large cortical bone defect. Department of Orthopaedics. Ph.D. Thesis, Universiti Sains Malaysia, Malaysia. 

  28. Foo LH, Suzina A, Azlina A and Kannan T. 2008. Gene expression analysis of osteoblasts seeded in coral scaffold. J Biomed Mater Res A 87, 215-221. http://dx.doi.org/10.1002/jbm.a.31765. 

  29. Fu S, Yang L, Fan J, Wen Q, Lin S, Wang B, Chen L, Meng X, Chen Y and Wu J. 2013. In vitro mineralization of hydroxyapatite on electrospun poly ( $\varepsilon$ -caprolactone)-poly (ethylene glycol)-poly ( $\varepsilon$ -caprolactone) fibrous scaffolds for tissue engineering application. Colloid Surface B 107, 167-173. http://dx.doi.org/10.1016/j.colsurfb.2013.01.068. 

  30. Gao Z, Chen F, Zhang J, He L, Cheng X, Ma Q and Mao T. 2009. Vitalisation of tubular coral scaffolds with cell sheets for regeneration of long bones: a preliminary study in nude mice. Brit J Oral Max Surg 47, 116-122. http://dx.doi. org/10.1016/j.bjoms.2008.07.199. 

  31. Geng W, Ma D, Yan X, Liu L, Cui J, Xie X, Li H and Chen F. 2013. Engineering tubular bone using mesenchymal stem cell sheets and coral particles. Biochem Bioph Res Co 433, 595-601. http://dx.doi.org/10.1016/j.bbrc.2013.03.034. 

  32. Gravel M, Gross T, Vago R and Tabrizian M. 2006. Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent. Biomaterials 27, 1899-1906. http://dx.doi.org/10.1016/j.biomaterials. 2005.10.020. 

  33. Green DW. 2008. Tissue bionics: examples in biomimetic tissue engineering.Biomed Mater 3, 034010. http://dx.doi.org/10.1088/1748-6041/3/3/034010. 

  34. Guerra A, Gonzalez AF, Pascual S and Dawe EG. 2011. The giant squid Architeuthis: An emblematic invertebrate that can represent concern for the conservation of marine biodiversity. Biol Conserv 144, 1989-1997. http://dx.doi.org/10.1016/j.biocon.2011.04.021. 

  35. Hadjidakis DJ and Androulakis II. 2006. Bone remodeling. Ann Ny Acad Sci 1092, 385-396. http://dx.doi.org/10.1196/annals.1365.035. 

  36. Hodkinson ID and Jackson JK. 2005. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manage 35, 649-666. http://dx.doi.org/10.1007/s00267-004-0211-x. 

  37. Hong JM, Kim BJ, Shim JH, Kang KS, Kim KJ, Rhie JW, Cha HJ and Cho DW. 2012. Enhancement of bone regeneration through facile surfaace functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins. Acta Biomaterlialia 8, 2578-2586. http://dx.doi.org/10.1016/j.aactbio.2012.03.041 

  38. Hoyer B, Bernhardt A, Lode A, Heinemann S, Sewing J, Klinger M, Notbohm H and Gelinsky M. 2014. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater 10, 883-892. http://dx.doi.org/10.1016/j.actbio.2013.10.022. 

  39. Ivankovic H, Ferrer GG, Tkalcec E, Orlic S and Ivankovic M. 2009. Preparation of highly porous hydroxyapatite from cuttlefish bone. J Mater Sci-Mater M 20, 1039-1046. http://dx.doi.org/10.1007/s10856-008-3674-0. 

  40. Ivankovic H, Tkalcec E, Orlic S, Ferrer GG and Schauperl Z. 2010. Hydroxyapatite formation from cuttlefish bones: kinetics. J Mater Sci-Mater M 21, 2711-2722. http://dx.doi.org/10.1007/s10856-010-4115-4. 

  41. Jayakumar R and Tamura H. 2008. Synthesis, characterization and thermal properties of chitin-g-poly ( $\varepsilon$ -caprolactone) copolymers by using chitin gel. Int J Biol Macromol 43, 32-36. http://dx.doi.org/10.1016/j.ijbiomac.2007.09.003. 

  42. Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB and Lee YM. 2007. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28, 1115-1122. http://dx.doi.org/10.1016/j.biomaterials.2006.10.025. 

  43. Jongjareonrak A, Benjakul S, Visessanguan W, Nagai T and Tanaka M. 2005. Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chem 93, 475-484. http://dx.doi.org/10.1016/j.foodchem.2004.10.026. 

  44. Kim BS, Kim JS, Sung HM, You HK and Lee J. 2012. Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. J Biomed Mater Res A 100, 1673-1679. http://dx.doi.org/10.1002/jbm.a.34113. 

  45. Kim BS, Kang HJ, Yang SS and Lee J. 2014. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomed Mater 9, 025004. http://dx.doi.org/10.1088/1748-6041/9/2/025004. 

  46. Kim BS, Kang HJ and Lee J. 2013b. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating. J Biomed Mater Res B 101, 1302-1309. http://dx.doi.org/10.1002/jbm.b.32943. 

  47. Kim HW, Lee SY, Bae CJ, Noh YJ, Kim HE, Kim HM and Ko JS. 2003. Porous $ZrO_{2}$ bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials 24, 3277-3284. http://dx.doi.org/10.1016/S0142-9612(03)00162-5. 

  48. Kim JJ, Kim HJ and Lee KS. 2008. Evaluation of biocompatibility of porous hydroxyapatite developed from edible cuttlefish bone. Key Eng Mater 361, 155-158. http://dx.doi.org/10.4028/www.scientific.net/KEM.361-363.155. 

  49. Kim KL, Ok KM, Kim DH, Park HC and Yoon SY. 2013c. Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. J Kor Ceram Soc 50, 263-268. http://dx.doi.org/10.4191/kcers. 2013.50.4.263. 

  50. Kim MS, Jung WK and Kim GH. 2013a. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration. Bioproc Biosyst Eng 36, 1725-1734. http://dx.doi.org/10.1007/s00449-013-0947-x. 

  51. Kim YB and Kim GH. 2013. Collagen/alginate scaffolds comprising core (PCL)-shell (collagen/alginate) struts for hard tissue regeneration: fabrication, characterisation, and cellular activities. J Mater Chem B 1, 3185-3194. http://dx.doi.org/10.1039/C3TB20485E. 

  52. Kon E, Filardo G, Robinson D, Eisman J, Levy A, Zaslav K, Shani J and Altschuler N. 2014. Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sport Tr A 22, 1452-1464. http://dx.doi.org/10.1007/s00167-013-2467-2. 

  53. Kunze K, Niemann H, Ueberlein S, Schulze R, Ehrlich H, Brunner E, Proksch P and Pee KHV. 2013. Brominated skeletal components of the marine demosponges, Aplysina cavernicola and Ianthella basta: Analytical and biochemical investigations. Mar Drugs 11, 1271-1287. http://dx.doi.org/10.3390/md11041271. 

  54. Lee KH, Jin GH, Jang CH, Jung WK and Kim GH. 2013. Preparation and characterization of multi-layered poly ( $\varepsilon$ -caprolactone)/chitosan scaffolds fabricated with a combination of melt-plotting/in situ plasma treatment and a coating method for hard tissue regeneration. J Mater Chem B 1, 5831-5841. http://dx.doi.org/10.1039/C3TB21123A. 

  55. Lee SJ and Lee HC. 2010. Fabrication of Porous Calcium Phosphate by Using a Pre-Form of Nature Material. J Kor Ceram Sor 47, 244-248. http://dx.doi.org/10.4191/KCERS. 2010.47.3.244. 

  56. Lee SJ, Lee MH, Kriven WM and Oh NS. 2010. Sintering Behavior and Biocompatibility of Calcium Phosphates Fabricated by Cuttlefish Bone and Phosphoric Acid. Tissue Eng Regen Med 7, 556-560. 

  57. Leys SP and Hill A. 2012. 1 The Physiology and Molecular Biology of Sponge Tissues. In: Advances in marine biology. Becerro MA, Uriz MJ, Maldonado M and Turon X, eds. Academic press, London, U.K., 1-56. 

  58. Li X, Zhao Y, Bing Y, Li Y, Gan N, Guo Z, Peng Z and Zhu Y. 2013. Biotemplated Syntheses of Macroporous Materials for Bone Tissue Engineering Scaffolds and Experiments in Vitro and Vivo. ACS Appl Mater Inter 5, 5557-5562. http://dx.doi.org/10.1021/am400779e. 

  59. Lim CW and Kim JS. 2014. Food component characterization and efficient use of jellyfish. Kor J Fish Aquat Sci 47, 459-473. http://dx.doi.org/10.5657/KFAS.2014.0459. 

  60. Lin Z, Solomon KL, Zhang X, Pavlos NJ, Abel T, Willers C, Dai K, Xu J, Zheng Q and Zheng M. 2011. In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7, 968-977. http://dx.doi.org/10.7150/ijbs.7.968. 

  61. Liu G, Zhang Y, Liu B, Sun J, Li W and Cui L. 2013a. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials 34, 2655-2664. http://dx.doi.org/10.1016/j.biomaterials. 2013.01.004. 

  62. Liu Y, Yu J, Bai J, Gu J, Cai B and Zhou X. 2013b. Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats. Zhonghua Shao Shang Za Zhi 29, 548-553. 

  63. Luo L, Wu M, Xu L, Lian W, Xiang J, Lu F, Gao N, Xiao C, Wang S and Zhao J. 2013. Comparison of physicochemical characteristics and anticoagulant activities of polysaccharides from three sea cucumbers. Mar Drugs 11, 399-417. http://dx.doi.org/10.3390/md11020399. 

  64. Ma J, Wang C and Peng K. 2003. Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials 24, 3505-3510. http://dx.doi.org/10.1016/S0142-9612(03)00203-5. 

  65. Madhumathi K, Kumar PS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair S and Jayakumar R. 2010. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci-Mater M 21, 807-813. http://dx.doi.org/10.1007/s10856-009-3877-z. 

  66. Mangano C, Paino F, d'Aquino R, De Rosa A, Iezzi G, Piattelli A, Laino L, Mitsiadis T, Desiderio V and Mangano F. 2011. Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex. PloS one 6, e18721. http://dx.doi.org/10.1371/journal.pone.0018721. 

  67. Matmaroh K, Benjakul S, Prodpran T, Encarnacion AB and Kishimura H. 2011. Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chem 129, 1179-1186. http://dx.doi.org/10.1016/j.foodchem.2011.05.099. 

  68. Milovac D, Gallego Ferrer G, Ivankovic M and Ivankovic H. 2014a. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity. Mater Sci Eng C 34, 437-445. http://dx.doi.org/10.1016/j.msec.2013.09.036. 

  69. Milovac D, Gamboa-Martinez TC, Ivankovic M, Gallego Ferrer G and Ivankovic H. 2014. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: In vitro cell culture studies. Mater Sci Eng C 42, 264-272. http://dx.doi.org/10.1016/j.msec.2014.05.034. 

  70. Minh CV, Kiem PV, Nhiem NX, Cuong NX, Thao NP, Nam NH, Anh HLT, Thung DC, Thuy DTT and Kang HK. 2011. Cytotoxic and antioxidant activities of diterpenes and sterols from the Vietnamese soft coral Lobophytum compactum. Bioorg Med Chem Lett 21, 2155-2159. http://dx.doi.org/10.1016/j.bmcl.2011.01.072. 

  71. Murphy CM, Haugh MG and O'Brien FJ. 2010. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31, 461-466. http://dx.doi.org/10.1016/j.biomaterials.2009.09.063. 

  72. Nagahama H, Kashiki T, Nwe N, Jayakumar R, Furuike T and Tamura H. 2008. Preparation of biodegradable chitin/ gelatin membranes with GlcNAc for tissue engineering applications. Carbohyd Polym 73, 456-463. http://dx.doi.org/10.1016/j.carbpol.2007.12.011. 

  73. Nguyen MHT, Qian ZJ and Jung WK. 2014. Beneficial Effect of Abalone Intestine Gastro-Intestinal Digests on Osteoblastic MG-63 Cell Differentiation. J Aquat Food Prod T 5, 436-446. http://dx.doi.org/10.1080/10498850.2012.721874. 

  74. Ning Y, Wei T, Defu C, Yonggang X, Da H, Dafu C, Lei S and Zhizhong G. 2009. The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit. J Biomed Mater Res A 88, 741-746. http://dx.doi.org/10.1002/jbm.a.31424. 

  75. Pallela R, Venkatesan J, Janapala VR and Kim SK. 2012. Biophysicochemical evaluation of chitosan-hydroxyapatitemarine sponge collagen composite for bone tissue engineering. J Biomed Mater Res A 100, 486-495. http://dx.doi.org/10.1002/jbm.a.33292. 

  76. Parizi AM, Oryan A, Shafiei-Sarvestani Z and Bigham A. 2012. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci-Mater M 23, 473-483. http://dx.doi.org/10.1007/s10856-011-4478-1. 

  77. Park JS, Lim YM, Youn MH, Gwon HJ and Nho YC. 2012. Biodegradable polycaprolactone/cuttlebone scaffold composite using salt leaching process. Korean J Chem Eng 29, 931-934. http://dx.doi.org/10.1007/s11814-011-0271-6. 

  78. Poinern GEJ and Fawcett D. 2013. The manufacture of a novel 3D hydroxyapatite microstructure derived from cuttlefish bones for potential tissue engineering applications. Am J Mater Sci 3, 130-135. http://dx.doi.org/10.5923/j.materials.20130305.04. 

  79. Pozzolini M, Mussino F, Cerrano C, Scarfi S and Giovine M. 2014. Sponge cell cultivation: Optimization of the model Petrosia ficiformis (Poiret 1789). J Exp Mar Biol Ecol 454, 70-77. http://dx.doi.org/10.1016/j.jembe.2014.02.004. 

  80. Puvaneswary S, Raghavendran HRB, Ibrahim NS, Murali MR, Merican AM and Kamarul T. 2013. A Comparative Study on Morphochemical Properties and Osteogenic Cell Differentiation within Bone Graft and Coral Graft Culture Systems. Int J Med Sci 10, 1608. http://dx.doi.org/10.7150/ijms.6496. 

  81. Radjasa OK, Vaske YM, Navarro G, Vervoort HC, Tenney K, Linington RG and Crews P. 2011. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorgan Med Chem 19, 6658-6674. http://dx.doi.org/10.1016/j.bmc.2011.07.017. 

  82. Riesgo A, Farrar N, Windsor PJ, Giribet G and Leys SP. 2014. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol 31, 1102-1120. http://dx.doi.org/10.1093/molbev/msu057. 

  83. Rim NG, Lee YB, Kim SJ and Shin H. 2010. Current status and prospect of biomaterials as tissue substitutes in regenerative medicine. Korean Ind Chem News 13, 2-17. 

  84. Ripamonti U, Crooks J, Khoali L and Roden L. 2009. The induction of bone formation by coral-derived calcium carbonate/ hydroxyapatite constructs. Biomaterials 30, 1428-1439. http://dx.doi.org/10.1016/j.biomaterials.2008.10.065. 

  85. Sarin P, Lee SJ, Apostolov ZD and Kriven WM. 2011. Porous biphasic calcium phosphate scaffolds from cuttlefish bone. J Am Ceram Soc 94, 2362-2370. http://dx.doi.org/10.1111/j.1551-2916.2011.04404.x. 

  86. Schlosser M, Frols S, Hauf U, Sethmann I, Schultheiss S, Pfeifer F and Kleebe HJ. 2013. Combined Hydrothermal Conversion and Vapor Transport Sintering of Ag-Modified Calcium Phosphate Scaffolds. J Am Ceram Soc 96, 412-419. http://dx.doi.org/10.1111/jace.12137. 

  87. Schegg B, Hulsmeier AJ, Rutschmann C, Maag C and Hennet T. 2009. Core glycosylation of collagen is initiated by two $\beta$ (1-O) galactosyltransferases. Mol Cell Biol 29, 943-952. http://dx.doi.org/10.1128/MCB.02085-07. 

  88. Seleghim MH, Lira SP, Kossuga MH, Batista T, Berlinck RG, Hajdu E, Muricy G, Rocha RMd, do Nascimento GG and Silva M. 2007. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Rev Bras Farmacogn 17, 287-318. http://dx.doi.org/10.1590/S0102-695X2007000300002. 

  89. Sergeeva N, Britaev T, Sviridova I, Akhmedova S, Kirsanova V, Popov A, Antokhin A, Frank G and Kaprin A. 2014. Scleractinium Coral Aquaculture Skeleton: a Possible 3D Scaffold for Cell Cultures and Bone Tissue Engineering. B Exp Biol Med 156, 504-508. http://dx.doi.org/10.1007/s10517-014-2385-4. 

  90. Silchenko AS, Avilov SA, Kalinin VI, Kalinovsky AI, Dmitrenok PS, Fedorov SN, Stepanov VG, Dong Z and Stonik VA. 2008. Constituents of the Sea Cucumber Cucumaria okhotensis. Structures of Okhotosides B1-B3 and Cytotoxic Activities of Some Glycosides from this Species. J Nat Prod 71, 351-356. http://dx.doi.org/10.1021/np0705413. 

  91. Sudharsan S, Seedevi P, Saravanan R, Ramasamy P, Kumar SV, Vairamani S, Srinivasan A and Shanmugam A. 2013. Isolation, characterization and molecular weight determination of collagen from marine sponge Spirastrella inconstans (Dendy). Afr J Biotechnol 12, 504-511. http://dx.doi.org/10.5897/AJB12.836. 

  92. Thao NP, Cuong NX, Luyen BTT, Thanh NV, Nhiem NX, Koh Y-S, Ly BM, Nam NH, Kiem PV and Minh CV. 2013. Antiinflammatory Asterosaponins from the Starfish Astropecten monacanthus. J Nat Prod 76, 1764-1770. http://dx.doi.org/10.1021/np400492a. 

  93. Tripathi A, Murthy PSN, Keshri G and Singh MM. 2011. Tissue Engineered Osteogenesis in Bone Defects by Homologous Osteoblasts Loaded on Sterile Bioresorbable Coral Scaffold in Rabbits. Surg Sci 2, 369-375. http://dx.doi.org/10.4236/ss.2011.27081. 

  94. Trinkunaite-Felsen J, Stankeviciute Z, Yang J, Yang TC, Beganskiene A and Kareiva A. 2014. Calcium hydroxyapatite/ whitlockite obtained from dairy products: Simple, environmentally benign and green preparation technology. Ceram Int 40, 12717-12722. http://dx.doi.org/10.1016/j.ceramint. 2014.04.120. 

  95. Tran CT, Gargiulo C, Thao HD, Tuan HM, Filgueira L and Strong DM. 2011. Culture and differentiation of osteoblasts on coral scaffold from human bone marrow mesenchymal stem cells. Cell Tissue Bank 12, 247-261. http://dx.doi.org/10.1007/s10561-010-9208-2. 

  96. Vago R. 2008. Cnidarians biomineral in tissue engineering: a review. Mar Biotechnol 10, 343-349. http://dx.doi.org/10.1007/s10126-008-9103-z. 

  97. Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D and Itzhak D. 2002. Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Bioph Method 50, 253-259. http://dx.doi.org/10.1016/S0165-022X(01)00235-4. 

  98. Walsh NC and Gravallese EM. 2010. Bone remodeling in rheumatic disease: a question of balance. Immunol Rev 233, 301- 312. http://dx.doi.org/10.1111/j.0105-2896.2009.00857.x. 

  99. White AA, Best SM and Kinloch IA. 2007. Hydroxyapatite- carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Tec 4, 1-13. http://dx.doi.org/10.1111/j.1744-7402.2007.02113.x 

  100. Wysokowski M, Bazhenov VV, Tsurkan MV, Galli R, Stelling AL, Stocker H, Kaiser S, Niederschlag E, Gartner G and Behm T. 2013. Isolation and identification of chitin in threedimensional skeleton of Aplysina fistularis marine sponge. Int J Biol Macromol 62, 94-100. http://dx.doi.org/10.1016/j.ijbiomac.2013.08.039. 

  101. Yang S, Leong KF, Du Z and Chua CK. 2001. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7, 679-689. http://dx.doi.org/10.1089/107632701753337645. 

  102. Zhang J, Duan R, Huang L, Song Y and Regenstein JM. 2014. Characterisation of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye). Food Chem 150, 22-26. http://dx.doi.org/10.1016/j.foodchem. 2013.10.116. 

  103. Zhang S, Mao T and Chen F. 2011. Influence of platelet-rich plasma on ectopic bone formation of bone marrow stromal cells in porous coral. Int J Oral Max Surg 40, 961-965. http://dx.doi.org/10.1016/j.ijom.2011.02.037. 

  104. Zhang Y, Liu W, Li G, Shi B, Miao Y and Wu X. 2007. Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodon idella). Food Chem 103, 906-912. http://dx.doi.org/10.1016/j.foodchem. 2006.09.053. 

  105. Zhang Y, Yin QS, Xia H, Ai FZ, Jiao YP and Chen XQ. 2010. Determination of antibacterial properties and cytocompatibility of silver-loaded coral hydroxyapatite. J Mater Sci- Mater M 21, 2453-2462. http://dx.doi.org/10.1007/s10856-010-4101-x. 

  106. Zheng YH, Xiong W, Su K, Kuang SJ and Zhang ZG. 2013. Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo. Exp Ther Med 5, 1576-1580. http://dx.doi.org/10.3892/etm.2013.1042. 

  107. Zhuang Y, Sun L and Li B. 2012. Production of the angiotensin- I-converting enzyme (ACE)-inhibitory peptide from hydrolysates of jellyfish (Rhopilema esculentum) collagen. Food Bioprocess Tech 5, 1622-1629. http://dx.doi.org/10.1007/s11947-010-0439-9. 

  108. Zhuang Y, Sun L, Zhao X, Wang J, Hou H and Li B. 2009. Antioxidant and melanogenesis inhibitory activities of collagen peptide from jellyfish (Rhopilema esculentum). J Sci Food Agr 89, 1722-1727. http://dx.doi.org/10.1002/jsfa.3645. 

  109. Zia KM, Barikani M, Zuber M, Bhatti IA and Sheikh MA. 2008. Molecular engineering of chitin based polyurethane elastomers. Carbohyd Polym 74, 149-158. http://dx.doi.org/10.1016/j.carbpol.2008.03. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로