$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

에너지함유 열가소성탄성체 적용을 위한 아지드화 폴리부타디엔/에틸렌-비닐아세테이트 공중합체 블렌드 제조

Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer

초록

에틸렌-비닐아세테이트(EVA)와 아지드화 폴리부타디엔(Az-PBD)를 블렌드 함으로써 새로운 에너지함유 열가소성탄성체를 제조하고, 이들의 미세구조 및 제반물성을 SEM, DSC, DMA, 인장실험 및 연소시험으로부터 조사하였다. Az-PBD는 1,2-비닐기를 갖는 폴리부타디엔(PBD)을 첨가반응에 의해 비닐기를 브롬화시킨 후, $NaN_3$를 이용하여 브롬기를 아지드기($-N_3$)로 치환시킴으로써 제조하였다. EVA/Az-PBD 블렌드는 EVA/Az-PBD 비율이 무게비로 각각 90/10, 80/20, 70/30이 되도록 용액 블렌딩으로 제조하였다. SEM, DSC, DMA 분석 결과 이들 블렌드는 부분적으로 상용성이며, EVA가 연속상을 이루고 Az-PBD가 분산상을 이루는 미세구조를 갖는 것을 알 수 있었다. 인장실험으로부터 Az-PBD 함량이 증가될수록 인장모듈러스 및 영구신장변형율이 증가되고 파단신율이 감소되는 경향을 보였으나, 제조된 모든 블렌드들은 700% 이상의 파단신율과 5% 이하의 영구인장변형율을 나타내어, 일반적인 탄성고무소재와 같은 특성을 나타내었다. 또한, 연소 시 Az-PBD 함량 증가함에 따라 더 큰 불꽂이 발생되어 연소 시 더 높은 에너지를 발생시킬 수 있음을 확인할 수 있었다.

Abstract

A new energetic thermoplastic elastomer based on the azidated polybutadiene(Az-PBD)/ethylene vinyl acetate copolymer (EVA) blends was prepared, and structure and properties of the blends were invetigated by SEM, DSC, DMA, tensile testing and combustion test. The Az-PBD was synthesized via a two-step process involving the addition reaction of commercially available 1,2-PBD with $Br_2$ and subsequent nucleophilic substitution reaction of the brominated PBD with $NaN_3$. EVA/Az-PBD with 90/10, 80/20, 70/30 (wt/wt) was prepared by a solution blending. SEM, DSC, and DMA results revealed that the blends are partially compatible and Az-PBD is dispersed in continuous EVA matrix. Tensile test showed that modulus and tension set increased while elongation-at-break of the blends decreased with increasing Az-PBD content in the blends, but all the blends showed a elongation at break as high as 700% and a tension set of less than 5%, indicating that the blends are typically elastomeric. Combustion test showed that, with increasing Az-PBD content in the blend, higher energy can be released.

참고문헌 (20)

  1. Hsieh, W. H., Peretz, A. Huang, I.-T. and Kuo, K. K. "Combustion Behavior of Boron-based BAMMO NMMO Fuel-rich Solidpropellants," J. Propul., 7(4), 497-504(1991). 
  2. Miyazaki, T. and Kubota, N., "Energetics of BAMO," Propel. Explos. Pyrotech, 17(1), 5-9(1992). 
  3. Talukder, M. A. H. and Lindsay, G. A., "Synthesis and the Preliminary Analysis of Block Copolymers of 3,3'-bis(azidomethyl)-oxetane and 3-nitratomethyl-3'-methyloxetane," J. Polym. Sci. Part A: Polym. Chem., 28(9), 2393-2401(1990). 
  4. Eroglu, M. S. and Guven, O, "Spectroscopic and Thermal Characterization of Poly(glycidyl azide) Converted from Polyepichlorohydrin," J. Appl. Polym. Sci., 60(9), 1361-1367(1996). 
  5. Varma, I. K., "High Energy Binders: Glycidyl Azide and Allyl Azide Polymer," Macromol Symp, 210, 121-129(2004). 
  6. Eroglu, M. S. and Guven, O., "Characterization of Network Structure of Poly(glycidyl azide) Elastomers by Swelling, Solubility and Mechanical Measurements," Polymer, 39(5), 1173-1176(1998). 
  7. Bui, V. T., Ahad, E., Rheaume, D. and Raymond, M. P., "Energetic Polyurethanes from Branched Glycidyl Azide Polymer and Copolymer," J. Appl. Polym. Sci., 62(1), 27-32(1996). 
  8. Xue, H., Gao, H. and Shreeve, J. M., "Energetic Polymer Salts from 1-vinyl-1,2,4-triazole Derivatives," J. Polym. Sci. Part A: Polym. Chem., 46, 2414-2421(2008). 
  9. Shin, J.-A., Lim, Y.-G. and Lee, K.-H., "Synthesis of Polymers Including Both Triazole and Tetrazole by Click Reaction," Bull. Korean Chem. Soc., 32(2), 547-552(2011). 
  10. Manser, G. E. and Fletcher, R. W., "Energetic Thermoplastic Elastomers," Summary Report, Office of Naval Research Contract N00014- 87-C-0098(1988). 
  11. Diaz, E., Brousseau, P., Ampleman, G. and Prudhomme, R. E., "Heats of Combustion and Formation of New Energetic Thermoplastic Elastomers Based on GAP, PolyNIMMO and PolyGLYN," PROPELLANT-EXPLOS-PYROTECH, 28(3), 101-106(2003). 
  12. Pisharath, S. and Ang, H. G., "Synthesis and Thermal Decomposition of GAP-Poly(BAMO) Copolymer," Polym Degrad Stab, 92(7), 1365-1377(2007). 
  13. Duo, Y., Tan, H. and Chen, F., "Synthesis and Characterization of Thermoplastic Polyurethanes as Binder for Novel Thermoplastic Propellant," J. Appl. Polym. Sci., 83(14), 2961-2966(2002). 
  14. Walker, B. M. and Rader, C. P., "Handbook of Thermoplastic Elastomers," 2ndEd. New York(1998). 
  15. De, S. K. and Bhowmick, A. K., "Thermoplastic Elastomers from Rubber-plastic Blends," Ellis Horwood, New York(1990). 
  16. Jin, S. H., Song, G. S. and Lee, D. S., "Thermal Properties of the Themoplastic Elastomers Based on EPDM Ionomer/polyamide-6 Blends," Korean Chem Eng Res, 50(1), 167-172(2012). 
  17. Choi, M.-C., Chang, Y.-W., Noh, S.-T., Kwon, J., Kim, D.-K. and Kwon, S.-K., "Energetic Thermoplastic Elastomers from Azidated Polyepichlorohydrin Rubber (Az-PECH)/styrene Acrylonitrile Copolymer (SAN) Blends," J. Korean Ind. Eng. Chem, 20(4), 375-380(2009). 
  18. http://www.jsr.co.jp/jsr_e/pd/tpe_rb.shtml. 
  19. www.dupont.com/content/.../elvax_40l_03.pdf. 
  20. Shi, X. M., Zhang, J., Jin, J. and Chen, S. J., "Non-isothermal Crystallization and Melting of Ethylene-vinyl Acetate Copolymers with Different Vinyl Acetate Contents," eXPRESS Polym. Lett. 2(9), 623-629(2008). 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일