$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique 원문보기

Journal of the Optical Society of Korea, v.19 no.3, 2015년, pp.228 - 236  

Lee, Donghee (Department of Mechanical Engineering, Kookmin University) ,  Kim, Jeong Chul (Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University) ,  Shin, Eunkyoung (Clinical Research Institute, Seoul National University Hospital) ,  Ju, Kyung Don (Clinical Research Institute, Seoul National University Hospital) ,  Oh, Kook-Hwan (Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital) ,  Kim, Hee Chan (Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University) ,  Kang, Eungtaek (Department of Internal Medicine, Chung-Ang University Hospital) ,  Kim, Jung Kyung (Department of Mechanical Engineering, Kookmin University)

Abstract AI-Helper 아이콘AI-Helper

Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agaro...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • (a) Concentrations of NaFluo and glucose during PET. (b) Concentration profiles of solutes with time in logarithmic scale.
  • The concentrations of both NaFluo and fluorescein dextrans were 4 mg/ml. We hypothesized that the pore size of the agarose gel would affect the diffusion of molecules. The concentration of agarose was controlled to make different pore sizes of agarose gel.
본문요약 정보가 도움이 되었나요?

참고문헌 (28)

  1. B. Rippe, "A three-pore model of peritoneal transport," Peritoneal Dialysis International 13 (Suppl 2), S35-S38 (1993). 

  2. E. Goffin, "Peritoneal membrane structural and functional changes during peritoneal dialysis," Semin. Dial. 21, 258-265 (2008). 

  3. W. Van Biesen, A. Van Der Tol, N. Veys, N. Lameire, and R. Vanholder, "Evaluation of the peritoneal membrane function by three letter word acronyms: PET, PDC, SPA, PD-Adequest, POL: What to do?," Contrib. Nephrol. 150, 37-41 (2006). 

  4. M. M. Pannekeet, A. L. Imholz, D. G. Struijk, G. C. Koomen, M. J. Langedijk, N. Schouten, R. de Waart, J. Hiralall, and R. T. Krediet, "The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients," Kidney Int. 48, 866-875 (1995). 

  5. J. Lippincott-Schwartz, E. Snapp, and A. Kenworthy, "Studying protein dynamics in living cells," Nat. Rev. Mol. Cell Biol. 2, 444-456 (2001). 

  6. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, "Mobility measurement by analysis of fluorescence photobleaching recovery kinetics," Biophys. J. 16, 1055-1069 (1976). 

  7. J. D. Bryers and F. Drummond, "Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (frap)," Biotechnol. Bioeng. 60, 462-473 (1998). 

  8. H. A. Leddy and F. Guilak, "Site-specific moleculars diffusion in articular cartilage measured using fluorescence recovery after photobleaching," Ann. Biomed. Eng. 31, 753-760 (2003). 

  9. M. C. Papadopoulos, J. K. Kim, and A. S. Verkman, "Extracellular space diffusion in central nervous system: Anisotropic diffusion measured by elliptical surface photobleaching," Biophys. J. 89, 3660-3668 (2005). 

  10. K. H. Lee, S. J. Shin, C. B. Kim, J. K. Kim, Y. W. Cho, B. G. Chung, and S. H. Lee, "Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip," Lab. Chip. 10, 1328-1334 (2010). 

  11. J. R. Thiagarajah, J. K. Kim, M. Magzoub, and A. S. Verkman, "Slowed diffusion in tumors revealed by microfiberoptic epifluorescence photobleaching," Nat. Meth. 3, 275-280 (2006). 

  12. Z. Zador, M. Magzoub, S. Jin, G. T. Manley, M. C. Papadopoulos, and A. S. Verkman, "Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain," FASEB J. 22, 870-879 (2008). 

  13. T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, "Constrained diffusion or immobile fraction on cell surfaces: A new interpretation," Biophys. J. 70, 2767-2773 (1996). 

  14. J. Yguerabide, J. A. Schmidt, and E. E. Yguerabide, "Lateral mobility in membranes as detected by fluorescence recovery after photobleaching," Biophys. J. 40, 69-75 (1982). 

  15. D. M. Soumpasis, "Theoretical analysis of fluorescence photobleaching recovery experiments," Biophys. J. 41, 95-97 (1983). 

  16. G. K. Ackers and R. L. Steere, "Restricted diffusion of macromolecules through agar-gel membranes," Biochim. Biophys. Acta. 59, 137-149 (1962). 

  17. M. F. Flessner, "Small-solute transport across specific peritoneal tissue surfaces in the rat," J. Am. Soc. Nephrol. 7, 225-233 (1996). 

  18. R. B. Asghar and S. J. Davies, "Pathways of fluid transport and reabsorption across the peritoneal membrane," Kidney Int. 73, 1048-1053 (2008). 

  19. B. Rippe and D. Venturoli, "Fluid loss from the peritoneal cavity by back-filtration through the small pores of the three-pore model," Kidney Int. 73, 985-986 (2008). 

  20. S. J. Davies, J. Bryan, L. Phillips, and G. I. Russell, "Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis," Nephrology Dialysis Transplantation 11, 498-506 (1996). 

  21. J. Burkart and J. M. Henrich, "Problems with solute clearance and ultrafiltration in continuous peritoneal dialysis," UpToDate (2013). 

  22. W. Smit, N. Schouten, N. van den Berg, M. J. Langedijk, D. G. Struijk, and R. T. Krediet, "Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study," Peritoneal Dialysis International 24, 562-70 (2004). 

  23. B. G. Stegmayr, "Beta-blockers may cause ultrafiltration failure in peritoneal dialysis patients," Peritoneal Dialysis International 17, 541-5 (1997). 

  24. S. J. Davies, E. A. Brown, N. E. Frandsen, A. S. Rodrigues, A. Rodriguez-Carmona, A. Vychytil, E. Macnamara, A. Ekstrand, A. Tranaeus, and J. C. Filho, "Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription," Kidney Int. 67, 1609-1615 (2005). 

  25. M. F. Flessner and R. L. Dedrick, "Role of the liver in small-solute transport during perit Flessner oneal dialysis," J. Am. Soc. Nephrol. 5, 116-120 (1994). 

  26. L. Gotloib, A. Shustak, P. Bar-Sella, and V. Eiali, "Heterogeneous density and ultrastructure of rabbit's peritoneal microvasculature," Int. J. Artif. Organs. 7, 123-125 (1984). 

  27. C. Ronco, "The "nearest capillary" hypothesis: A novel approach to peritoneal transport physiology," Perit. Dial. Int. 16, 121-125 (1996). 

  28. T. Casalini, M. Salvalaglio, G. Perale, M. Masi, and C. Cavallotti, "Diffusion and aggregation of sodium fluorescein in aqueous solutions," J. Phys. Chem. B. 115, 12896-12904 (2011). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로