$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

마산만에서 와편모류 Dinophysis acuminata 및 Oxyphysis oxytoxoides와 먹이생물 섬모류인 Mesodinium rubrum의 단주기적 개체군 변동

Semi-daily Variations in Populations of the Dinoflagellates Dinophysis acuminata and Oxyphysis oxytoxoides and a Mixotrophic Ciliate Prey Mesodinium rubrum in Masan Bay

바다 : 한국해양학회지 v.20 no.3 , 2015년, pp.151 - 157  
초록

실내 배양체를 이용한 최근의 연구들은 혼합영양성 와편모류 Dinophysis와 종속영양성 와편모류 Oxyphysis oxytoxoides가 둘 다 혼합영양성 섬모류인 Mesodinium rubrum을 먹이생물로 이용하여 잘 성장한다는 점을 보고한 바 있다. 본 연구는 자연 생태계에서 포식자인 D. acuminata 및 O. oxytoxoides와 그들의 먹이인 M. rubrum사이의 상호작용을 연구할 목적으로 2011년 7월말부터 8월말까지 한 달간에 걸쳐 마산만의 한 고정 정점에서 하루 2회씩 개체군 변동을 모니터링 하였다. 본 연구동안 염분은 강수량이 높게 나타난 시기에 최소 5까지 급격하게 낮아지다가 강수량이 감소하는 8월말로 갈수록 약 28까지 점차적으로 증가하는 경향을 나타냈고, 수온은 8월 20일까지는 평균적으로 $26.5^{\circ}C$를 유지하였으나, 이후에는 평균 $21^{\circ}C$를 유지하였다. M. rubrum은 연구기간 동안 지속적으로 출현하였으나 그 변동 폭($13-492\;cells\;mL^{-1}$)이 매우 컸다. D. acuminata와 O. oxytoxoides의 개체수는 각각 $n.d.-19,833\;cells\;L^{-1}$$n.d.-100,333\;cells\;L^{-1}$의 범위를 나타냈다. 전반적으로 D. acuminata와 먹이생물인 M. rubrum의 개체수 출현 양상은 시간차를 두고 서로 밀접한 관계를 보이기도 하였으나, M. rubrum이 높은 밀도로 출현함에도 불구하고 D. acuminata의 대번식이 일어나지 않는 경우가 존재하였는데, 이러한 이유는 극심한 염분의 변화 및 포식 등의 결과로 판단된다. 한편, O. oxytoxoides는 M. rubrum이 지속적으로 출현함에도 불구하고 $19-24^{\circ}C$의 수온 범위에서만 출현한 결과로 볼 때, 먹이생물의 부족보다는 수온 등의 환경요인이 O. oxytoxoides의 밀도 변화에 큰 영향을 미쳤을 것으로 판단된다.

Abstract

Recent laboratory studies have documented that mixotrophic dinoflagellates Dinophysis spp. and heterotrophic dinoflagellate Oxyphysis oxytoxoides share a common prey, i.e. the mixotrophic ciliate Mesodinium rubrum. Nonetheless, very little is known about the population dynamics and species interactions among these protists in natural environments. To investigate the interactions between the dinoflagellate predators and their ciliate prey in the field, we took the samples twice a day from 26 July to 28 August, 2011 at a fixed station in Masan Bay and analyzed their abundances. During this study, salinity was highly variable, ranging from 5 to 28, due to the periodic input of rainfalls to the sampling station. Water temperature was on average $26.5^{\circ}C$ until 20 August and thereafter was about $21^{\circ}C$ by the end of the sampling period. The ciliate M. rubrum occurred persistently throughout the sampling period, ranging from 13 to $492\;cells\;mL^{-1}$. Cell densities of D. acuminata and O. oxytoxoides ranged from undetectable level to $19,833\;cells\;L^{-1}$ and from undetectable level to $100,333\;cells\;L^{-1}$, respectively. The high abundance of D. acuminata mostly followed the blooming of the ciliate M. rubrum, but it often did not peak even during heavy blooms of the prey, probably due to sensitivity to large salinity fluctuation and also presumably overlapped grazing by other mixotrophic dinoflagellates. The abundance of O. oxytoxoides was detected only when water temperature was lower than $24^{\circ}C$, indicating that water temperature is an important environmental factor to control the population dynamics of the dinoflagellate species.

본문요약 

문제 정의
  • 본 연구에서는 마산만의 한 정점에서 위 세 생물간 자연 상태에서의 상호작용을 연구할 목적으로 2011년 7월말부터 8월말까지 한 달간에 걸쳐 모니터링을 수행하였으며, 이 결과를 바탕으로 포식과 밀접한 관계를 갖는 세 종 사이의 생태학적 의미를 토의하였다.

    rubrum사이의 상호작용을 동시에 연구한 결과는 없는 상태이다. 본 연구에서는 마산만의 한 정점에서 위 세 생물간 자연 상태에서의 상호작용을 연구할 목적으로 2011년 7월말부터 8월말까지 한 달간에 걸쳐 모니터링을 수행하였으며, 이 결과를 바탕으로 포식과 밀접한 관계를 갖는 세 종 사이의 생태학적 의미를 토의하였다.

본문요약 정보가 도움이 되었나요?

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
Dinophysis
Dinophysis는 무엇으로 은편모류 색소체를 획득하는가?
색소체의 중간 매개체인 혼합영양성 섬모류인 Mesodinium rubrum을 통해서 은편모류 색소체를 획득한다

그러나 Park et al.(2006)은 Dinophysis가 색소체의 중간 매개체인 혼합영양성 섬모류인 Mesodinium rubrum을 통해서 은편모류 색소체를 획득한다는점을 규명하였으며, 이들 세 종류의 생물(은편모류-섬모류 M. rubrum와편모류 Dinophysis)간의 생물학적 섭식 상호작용에 기초하여 세계 최초로 Dinoiphysis acuminata 실내 배양체를 확립하는데 성공하였다.

Dinophysis의 색소체
Dinophysis의 색소체는 무엇의 기원인가?
은편모류

fortii등여러 Dinophysis종들이혼합영양(mixotrophy)을 할 가능성을 시사하였으며, Dinophysis종들의 실내배양체 확립에는 이러한 혼합영양 특성이 밀접하게 관련되어 있음을 짐작할 수 있게 되었다. 한편, 투과전자현미경을 이용한 초미세구조 연구 및 색소체 관련 유전자 염기서열 분석 등은Dinophysis의 색소체가 은편모류 기원임을 시사하였다(Schnepf andElbrächter, 1988; Lucas and Vesk, 1990; Takishita et al., 2002;Hackett et al.

마산만의 한 고정 정점(35°20'N, 128°57'E
마산만의 한 고정 정점(35°20'N, 128°57'E)의 지형적 특징은?
반폐쇠성 해역으로서, 주변 해역과 해수순환이 제한되어 있을 뿐만 아니라 연간 36회 이상의 적조가 일어날 정도로 부영양화되어 있는 해역이다

1)에서 2011년 7월 26일부터 8월 28일까지 34일 동안 오전 9시와 오후 3시에 매일 2회씩 표층 채수기를 이용하여 표층수를 채수하였다. 연구 정점이 위치한 마산만 해역은 반폐쇠성 해역으로서, 주변 해역과 해수순환이 제한되어 있을 뿐만 아니라 연간 36회 이상의 적조가 일어날 정도로 부영양화되어 있는 해역이다(Jeong et al., 2013).

질의응답 정보가 도움이 되었나요?

참고문헌 (35)

  1. Fensome, R.A., F.J.R. Taylor, G. Norris, W.A.S. Sarjeant, D.I. Wharton and G.L. Williams, 1993. A Classification of Living and Fossil Dinoflagellates. Micropaleontology Special Pub 7, Sheridan Press, Hanover, Pennsylvania, USA 
  2. Garcia-Cuetos, L., O. Moestrup, P. J. Hansen and N. Daugbjerg, 2010. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. Harmful Algae, 9: 25-38. 
  3. Hackett, J. D., L. Maranda, H.S. Yoon and D. Bhattacharya, 2003. Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J. Phycol., 39: 440-448. 
  4. Inoue, H., Y. Fukuyo and Y. Nimura, 1993. Feeding behavior of dinoflagellate, Oxyphysis oxytoxoides, on ciliates. Bull. Plankton Soc. Japan, 40: 9-17. 
  5. Jacobson, D.M. and R.A. Andersen, 1994. The discovery of mixotrophy in photosynthetic species of Dinophysis (Dinophyceae): light and electron microscopical observations of food vacuoles in Dinophysis acuminata, D. norvegica and two heterotrophic dinophysoid dinoflagellates. Phycologia, 33: 97-110. 
  6. Janson, S and E. Graneli, 2003. Genetic analysis of the psbA gene from single cells indicates a cryptomonad origin of the plastid in Dinophysis (Dinophyceae). Phycologia, 42: 473-477. 
  7. Jeong, H.J., Y.D. Yoo, K.H. Lee, T.H. Kim, K.A. Seong, N.S. kang, S.Y. Lee, J.S. Kim, S. Kim and W.H. Yih, 2013. Red tides in Masan Bay, Korea in 2004-2005: I. daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae, 30S: S75-S88. 
  8. Kamiyama, T. and T. Suzuki, 2009. Production of dinophysistoxin-1 and pectenotoxin-2 by a culture of Dinophysis acuminata (Dinophyceae). Harmful Algae, 8: 312-317. 
  9. Kim, H.S., Y.G. Kim, J.S. Yang and W. Yih, 2004. Comparative population dynamics of photosynthetic ciliate Mesodinium rubrum (=Myrionecta rubra) in Gomso Bay and the Geum River estuary, Korea. J. Kor. Soc. Ocean., The Sea, 9: 164-172. 
  10. Kim, M., S.W. Nam, W. Shin, D.W. Coats and M.G. Park, 2012. Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. J. Phycol., 48: 569-579. 
  11. Kim, S., Y.G. Kang, H.S. Kim, W. Yih, D.W. Coats and M.G. Park, 2008. Growth and grazing responses of the mixotrophic dinoflagellate Dinophysis acuminata as functions of light intensity and prey concentration. Aquat. Microb. Ecol., 51: 301-310. 
  12. Kofoid, C.A., 1926. On Oxyphysis oxytoxoides gen. nov., sp. nov. A dinophysoid dinoflagellate convergent toward the peridinioid type. Univ. Calif. Publ. Zool., 28(10): 203-216. 
  13. Koike, K., K. Koike, M. Takagi, T. Ogata and T. Ishimaru, 2000. Evidence of phagotrophy in Dinophysis fortii (Dinophysiolaes, Dinophyceae), a dinoflagellate that causes diarrhetic shellfish poisoning (DSP). Phycol. Res., 48: 121-124. 
  14. Lindholm, T., 1985. Mesodinium rubrum-a unique photosynthetic ciliate. Adv. Aquat. Microbiol., 3: 1-48. 
  15. Lucas, I.A.N. and M. Vesk, 1990. The fine structure of two photosynthetic species of Dinophysis (Dinophysiales, Dinophyceae). J. Phycol., 26: 345-357. 
  16. Maestrini, S.Y., B.R. Berland, D. Grzebyk and A.M. Spano, 1995. Dinophysis spp. cells concentrated from nature for experimental purposes, using size fractionation and reverse migration. Aquat. Microb. Ecol., 9: 177-182. 
  17. Nagai, S., G. Nishitani, Y. Tomaru, S. Sakiyama and T. Kamiyama, 2008. Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J. Phycol., 44: 909-922. 
  18. Nishitani, G, S. Nagai, S. Sakiyama and T. Kamiyama, 2008. Successful cultivation of the toxic dinoflagellate Dinophysis caudata (Dinophyceae). Plankton Benthos Res., 3: 78-85. 
  19. Nishitani, G., K. Miyamura and I. Imai, 2003. Trying to cultivation of Dinophysis caudata (Dinophyceae) and the appearance of small cells. Plankton Biol. Ecol., 50: 31-36. 
  20. Park, M.G., H. Lee and S. Kim, 2011. Feeding behavior, spatial distribution and phylogenatic affinities of the heterotrophic dinoflagellate Oxyphysis oxytoxoides. Aquat. Microb. Ecol., 62: 279-287. 
  21. Park, M.G., J.S. Park, M. Kim and W. Yih, 2008. Plastid dynamics during survival of Dinophysis caudata without its ciliate prey. J. Phycol., 44: 1154-1163. 
  22. Park, M.G., M. Kim, S. Kim and W. Yih, 2010. Does Dinophysis caudata (Dinophyceae) have permanent plastids? J. Phycol., 46: 236-242. 
  23. Park, M.G., S. Kim, E.-Y. Shin, W. Yih and D.W. Coats, 2013. Parasitism of harmful dinoflagellates in Korean coastal waters. Harmful Algae, 30S: S62-S74. 
  24. Park, M.G., S. Kim, H.S. Kim, G. Myung, Y.G. Kang and W. Yih, 2006. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol., 45: 101-106. 
  25. Reguera, B., L. Velo-Suarez, R. Raine, R and M.G. Park, 2012. Harmful Dinophysis species: A review. Harmful Algae, 14: 87-106. 
  26. Reguera, B., P. Riobo, F. Rodriguez, P.A. Diaz, G. Pizarro, B. Paz, J.M. Franco and J. Blanco, 2014. Dinophysis toxins: causative organisms, distribution and fate in shellfish. Mar. Drugs, 12: 394-461. 
  27. Riisgaard, K. and P.J. Hansen, 2009. Role of food uptake for photosynthesis, growth and survival of the mixotrophic dinoflagellate Dinophysis acuminata. Mar. Ecol. Prog. Ser., 381: 51-62. 
  28. Sampayo, M.A. de M., 1993. Trying to cultivate Dinophysis spp. In: Smayda TJ, Shimizu Y (eds) Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, p807-810 
  29. Schnepf, E. and M. Elbrachter, 1988. Cryptophycean-like double membrane-bound chloroplast in the dinoflagellate, Dinophysis Ehrenb.: evolutionary, phylogenetic and toxicological implications. Bot. Acta., 101: 196-203. 
  30. Sjoqvist, C.O. and T.J. Lindholm, 2011. Natural co-occurrence of Dinophysis acuminata (Dinoflagellata) and Mesodinium rubrum (Ciliophora) in thin layers in a coastal inlet. J. Eukaryot. Microbiol., 58(4): 365-372. 
  31. Swanson, K.M., L.J. Flewelling, M. Byrd, A. Nunez and T.A. Villareal, 2010. The 2008 Texas Dinophysis ovum bloom: distribution and toxicity. Harmful Algae, 9: 190-199. 
  32. Takishita, K., K. Koike, T. Maruyama and T. Ogata, 2002. Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Protist, 153: 293-302. 
  33. Whyte, C., S. Swan and K. Davidson, 2014. Changing wind pattern linked to unusually high Dinophysis blooms around the Shetland Islands, Scotland. Harmful Algae, 39: 365-373. 
  34. Yih, W., G. Myung, H.S. Kim and H.J. Jeong, 2005. Semiweekly variation of spring population of a mixotrophic ciliate Myrionecta rubra (=Mesodinium rubrum) in Keum River estuary, Korea. Algae, 20: 207-216. 
  35. Yih, W., H.S. Kim, G. Myung, J.W. Park, Y.D. Yoo and H.J. Jeong, 2013. The red-tide ciliate Mesodinium rubrum in Korean coastal waters. Harmful Algae, 30S: S53−S61. 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

DOI 인용 스타일

"" 핵심어 질의응답