$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구

A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis

초록

대표적 소셜미디어인 유튜브는 기존 폐쇄형 콘텐츠 서비스와는 다르게 개방형 콘텐츠 서비스로 이용자들의 참여와 공유를 통하여 많은 인기를 유지하고 있다. 콘텐츠 산업에서 중요한 위치를 차지하고 있는 유투브 상의 콘텐츠 확산 요인에 관한 기존의 연구들은 댓글 수 등과 같은 일반적 정보 특성 요인과 조회 수 간에 상관관계 등을 분석하는 것이 대부분이었다. 최근 네트워크 구조를 기반으로 한 연구들도 진행되었으나 대부분 콘텐츠를 이용하는 대상인 구독자나 지인 등을 중심으로 한 인적 관계 네트워크 구조 연구가 대부분이었다. 이에 본 연구에서는 실질적인 콘텐츠를 중심으로 한 네트워크 구조와 일반요인을 통합한 모델을 제시하고 확산요인을 분석하고자 한다. 이를 위해 통합 모델 인과관계 분석과 함께 21,307개의 유튜브 콘텐츠를 콘텐츠 기반 네트워크 구조로 분석하였다. 본 연구를 통해 기존에 알려진 일반적 요인과 네트워크 요인들이 모두 조회수에 영향을 주는 인과관계를 통계적으로 재검증하였으며 통합적으로는 등록자의 구독자 수, 경과시간, 매개 중심성, 댓글 수, 근접 중심성, 클러스터링 계수, 평균 평점 순으로 조회 수에 긍정적인 영향을 미치는 것으로 분석되었다. 하지만 네트워크 요인중 연결정도 중심성과 고유벡터 중심성은 부정적 영향을 주는 것으로 분석되었다. 본 연구를 통하여 유튜브 콘텐츠 확산에 대한 일반영향요인과 구조적인 현상을 함께 규명하였다. 본 연구는 기업들이 유튜브와 같은 콘텐츠 서비스를 통한 온라인 마케팅 활동 시 콘텐츠들의 구조적인 면을 고려할 수 있는 근거를 제공하였으며 음반산업의 수요예측이나 콘텐츠 제작 업체들의 원활한 서비스 제공을 위한 설명력있는 영향요인 및 모델이 될 수 있을 것이다.

Abstract

Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.

저자의 다른 논문

참고문헌 (21)

  1. Akrouf, S., L. Meriem, B. Yahia, and M. N. Eddine, "Social Network Analysis and Information Propagation: A Case Study Using Flickr and YouTube Networks," International Journal of Future Computer and Communication, Vol. 2, No. 3(2013), 21-22. 
  2. Bolland, J. M., "Sorting out centrality: An analysis of the performance of four centrality models in real and simulated networks," Social Networks, Vol. 10, No. 3(1988), 233-253. 
  3. Bonacich, P., "Power and centrality: A family of measures," American Journal of Sociology, Vol. 92, No. 5(1987), 1170-1182. 
  4. Borghol, Y., S. Ardon, N. Carlsson, D. Eager, and A. Mahanti, "The untold story of the clones: content-agnostic factors that impact youtube video popularity," Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, (2012), 1186-1194. 
  5. Brin, S. and L. Page, "The anatomy of a largecale hypertextual Web search engine," Computer networks and ISDN systems, Vol. 30, No. 1(1998), 107-117. 
  6. Burgess, J. E. and J. B. Green, YouTube: Online video and participatory culture, Cambridge: Polity press, 2009. 
  7. Chatzopoulou, G., C. Sheng, and M. Faloutsos, "A first step towards understanding popularity in youtube," INFOCOM IEEE Conference on Computer Communications Workshops, (2010), 1-6. 
  8. Cho I. D and N. G. Kim, "Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques," Journal of Intelligence and Information Systems, Vol.17 No.1(2011), 127-138. 
  9. Costenbader, E. and T. W. Valente, "The stability of centrality measures when networks are sampled," Social networks, Vol. 25, No. 4(2003), 283-307. 
  10. Freeman, L. C., "Centrality in social networks conceptual clarification," Social networks, Vol. 1, No. 3(1979), 215-239. 
  11. Girvan, M. and M. E. Newman, "Community structure in social and biological networks," roceedings of the National Academy of Sciences, Vol. 99, No. 12(2002), 7821-7826. 
  12. Kaplan, A. M. and M. Haenlein, "ers of the world, unite! The challenges and opportunities of Social Media," Business horizons, Vol. 53, No. 1(2010), 59-68. 
  13. Kim, I. J., D. C. Lee, and G. G. Lim, "A study on the Critical Success Factors of social Commerce through the Analysis of the Perception Gap between the Service Providers and the Users: Focused on Ticket Monster in Korea", Asia Pacific Journal of Information Systems, Vol. 24, No. 2(2014), 211-232. 
  14. Lee, S., S. Park, G, G. Lim, and S. Baek, "A Roadmap for Developing Digital Content Distribution Infrastructure," Journal of Korea Society of IT Services, Vol. 8, No. 4(2009), 75-86. 
  15. Park B. E. and G. G. Lim, "A Study on the Diffusion Impact Factors through Contents Network Analysis : Focused on Youtube," Proceedings of the Korea Inteligent Information System Society Conference, (2015). 
  16. Pallis, G., D. Zeinalipour-Yazti, and M. D. Dikaiakos, New Directions in Web Data Management 1, Springer Berlin Heidelberg. (2011), 213-234. 
  17. Santos, R. L., B. P. Rocha, C. G. Rezende, and A. A. Loureiro, "Characterizing the YouTube video-sharing community," Technical Report, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil, 2007. 
  18. Susarla, A., J. H. Oh, and Y. Tan, "Social networks and the diffusion of user-generated content: Evidence from YouTube," Information Systems Research, Vol. 23, No. 1(2012), 23-41. 
  19. Wasserman, S. and K. Faust, Social network analysis: Methods and applications, Cambridge university press, Vol. 8, 1994. 
  20. Watts, D. J. and S. H. Strogatz, "Collective dynamics of 'small-world' networks," Nature, Vol. 393, No. 6684(1998), 440-442. 
  21. Yoganarasimhan, H., "Impact of social network structure on content propagation: A study using YouTube data," Quantitative Marketing and Economics, Vol. 10, No. 1(2012), 111-150. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일