$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

최근 20 여년간의 괄목할만한 발전을 통해 단일 광섬유 레이저의 출력은 이미 kW 수준을 상회하고 있으며, 기존의 벌크 방식 레이저의 대체 기술로서 여전히 학계 및 산업계의 뜨거운 관심을 받고 있다. 본 논문은 이와 같은 광섬유 레이저의 괄목할만한 성장을 가능하게 한, 이터븀(Ytterbium) 혼입 이득 광섬유 사용 방식, 레이저 다이오드 펌프와 이중 클래딩 광섬유 구조를 통한 광학적 펌프 방식, 더 나아가서 양자결함을 최소화 하는 종렬 펌핑 방식 등 그 주요 요소 기술들을 개괄하고, 그 극한적 고출력화에 따른 발진 효율 및 특성 저하, 시스템 열화 및 불안정성 증대 등과 같은 고출력 광섬유 레이저 기술 자체가 직면하고 있는 다양한 기술적 문제점 및 그 완화 방안을 논의한다. 여기에서는 광섬유 레이저의 고출력화와 더불어 야기되는 다양한 형태의 광섬유내 비선형 현상, 광섬유 손상 및 모드 불안정 현상에 대한 논의를 포함한다. 이와 더불어, 전술한 다양한 출력 제한 현상을 극복함과 동시에 광섬유 레이저의 출력을 현격한 수준으로 더욱 증가시키기 위한 대체 방안으로 최근 주목을 많이 받고 있는 다중 빔 결합 기술에 대해 개괄적으로 논의한다. 특히, 분광형 다중 빔 결합 기술의 개념적 시스템 구성 요소 및 각 부문별 요구 기술에 대해 보다 심화된 논점을 둔다. 최종적으로 현 수준을 뛰어 넘는 광섬유 레이저의 출력 증대와 본 기술의 지속적 발전을 위한 앞으로의 발전 방향을 논의한다.

Abstract

Over the past two decades, fiber-based lasers have made remarkable progress, now having reached power levels exceeding kilowatts and drawing a huge amount of attention from academy and industry as a replacement technology for bulk lasers. In this paper we review the significant factors that have led to the progress of fiber lasers, such as gain-fiber regimes based on ytterbium-doped silica, optical pumping schemes through the combination of laser diodes and double-clad fiber geometries, and tandem schemes for minimizing quantum defects. Furthermore, we discuss various power-limitation issues that are expected to incur with respect to the ultimate power scaling of fiber lasers, such as efficiency degradation, thermal hazard, and system-instability growth in fiber lasers, and various relevant methods to alleviate the aforementioned issues. This discussion includes fiber nonlinear effects, fiber damage, and modal-instability issues, which become more significant as the power level is scaled up. In addition, we also review beam-combining techniques, which are currently receiving a lot of attention as an alternative solution to the power-scaling limitation of high-power fiber lasers. In particular, we focus more on the discussion of the schematics of a spectral beam-combining system and their individual requirements. Finally, we discuss prospects for the future development of fiber laser technologies, for them to leap forward from where they are now, and to continue to advance in terms of their power scalability.

참고문헌 (71)

  1. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. Park, and J.-M. P. Delavaux, "Stable single-mode Erbium fiber-grating laser for digital communication," IEEE J. Lightwave Technol. 11, 2021-2025 (1993). 
  2. L. G. Luo, P. L. Chu, and H. F. Liu, "1-GHz optical communication system using chaos in Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 12, 269-271 (2000). 
  3. Q. Peng, A. Juzeniene, J. Chen, L. O Svaasand, T. Warloe, K.-E. Giercksky, and J. Moan, "Lasers in medicine," Rep. Prog. Phys. 71, 1-28 (2008). 
  4. N. M. Fried and K. E. Murray, "High-power Thulium fiber laser ablation of urinary tissues at 1.94 ${\mu}m$," J. Endourol. 19, 25-31 (2005). 
  5. S. Son, H. Park, and K. H. Lee, "Automated laser scanning system for reverse engineering and inspection," Int. J. Mach. Tools Manuf. 42, 889-897 (2002). 
  6. T. Pfister, L. Buttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006). 
  7. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials," J. Appl. Phys. 85, 6803-6810 (1999). 
  8. A. N. Samant and N. B. Dahotre, "Laser machining of structural ceramics-a review" J. Eur. Ceram. Soc. 29, 969-993 (2009). 
  9. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). 
  10. J. C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007). 
  11. C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fibre lasers," Nat. Photonics 7, 861-867 (2013). 
  12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997). 
  13. M. E. Fermann and I. Hartl, "Ultrafast fiber laser technology," IEEE J. Sel. Top. Quantum Electron. 15, 191-206 (2009). 
  14. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). 
  15. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-471 (2004). 
  16. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, "Multi-kilowatt single-mode Ytterbium-doped large-core fiber laser," J. Opt. Soc. Korea 13, 416-422 (2009). 
  17. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency Ytterbium-doped fiber master-oscillaotr power-amplifier sources up to 500 W," IEEE J. Sel. Top. Quantum Electron. 13, 546-551 (2007). 
  18. E. Stiles, "New developments in IPG fiber laser technology," in Proceedings of the 5th International Workshop on Fiber Lasers (2009). 
  19. Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, "On the formation of noise-like pulses in fiber ring cavity configurations," Opt. Fiber Technol. 20, 575-592 (2014). 
  20. L. A. Vazquez-Zuniga and Y. Jeong, "Power-scalable, subnanosecond mode-locked erbium-doped fiber laser based on a frequency-shifted-feedback ring cavity incorporating a narrow bandpass filter," J. Opt. Soc. Kor. 17, 177-181 (2013). 
  21. L. A. Vazquez-Zuniga and Y. Jeong, "Wavelength-tunable, passively mode-locked erbium-doped fiber master-oscillator incorporating a semiconductor saturable absorber mirror," J. Opt. Soc. Kor. 17, 117-129 (2013). 
  22. L. A. Vazquez-Zuniga, H. Kim, Y. Kwon, and Y. Jeong, "Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber," Opt. Express 21, 7712-7725 (2013). 
  23. S. Lee, L. A. Vazquez-Zuniga, D. Lee, H. Kim, J. K. Sahu, and Y. Jeong, "Comparative experimental analysis of thermal characteristics of ytterbium-doped phosphosilicate and aluminosilicate fibers," J. Opt. Soc. Kor. 17, 182-187 (2013). 
  24. T. Yao, J. Ji, and J. Nilsson, "Ultra-low quantum-defect heating in Ytterbium-doped Aluminosilicate fibers," IEEE J. Lightwave Technol. 32, 429-434 (2014). 
  25. J. Limpert, F. Roser, T. Schreiber, and A, Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006). 
  26. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008). 
  27. K. Park and Y. Jeong, "A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers," Opt. Express 22, 7932-7946 (2014). 
  28. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010). 
  29. A. Liu, "Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient," Opt. Express 15, 977-984 (2007). 
  30. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, "170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier," Opt. Express 21, 5456-5462 (2013). 
  31. N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," IEEE J. Lightwave Technol. 11, 1518-1522 (1993). 
  32. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," IEEE J. Lightwave Technol. 22, 631-639 (2004). 
  33. P. D. Dragic, "Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers," Electron. Lett. 48, 1492-1493 (2012). 
  34. L. Dong, "Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs," IEEE J. Lightwave Technol. 28, 3156-3161 (2010). 
  35. D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tunnermann, "Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers," Opt. Lett. 35, 2982-2984 (2010). 
  36. J. Kim, P. Dupriez, C. Codemard, J.Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006). 
  37. X. Ma, I.-N. Hu, and A. Galvanauskas, "Propagation-length independent SRS threshold in chirally-coupled-core fibers," Opt. Express 19, 22575-22581 (2011). 
  38. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, "Peak-power limits on fiber amplifiers imposed by selffocusing," Opt. Lett. 31, 3423-3425 (2006). 
  39. G. Fibich and A. L. Gaeta, "Critical power for self-focusing in bulk media and in hollow waveguides," Opt. Lett. 25, 335-337 (2000). 
  40. A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011). 
  41. C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, "The impact of modal interference on the beam quality of high-power fiber amplifiers," Opt. Express 19, 3258-3271 (2011). 
  42. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Physical origin of mode instabilities in high-power fiber laser systems," Opt. Express 20, 12912-12925 (2012). 
  43. M. Karow, H. Tunnermann, J. Neumann, D. Kracht, and P. Wessels, "Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power," Opt. Lett. 37, 4242-4244 (2012). 
  44. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011). 
  45. A. V. Smith and J. J. Smith, "Increasing mode instability thresholds of fiber amplifers by gain saturation," Opt. Express 21, 15168-15182 (2013). 
  46. C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Passive mitigation strategies for mode instabilities in high-power fiber laser systems," Opt. Express 21, 19375-19386 (2013). 
  47. S. Naderi, I. Dajani, T. Madden, and C. Robin, "Investigation of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express 21, 16111-16129 (2013). 
  48. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Laegsgaard, "Thermally induced mode coupling in rare-earth doped fiber amplifiers" Opt. Lett. 37, 2382-2384 (2012). 
  49. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005). 
  50. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," J. Opt. Soc. Am. B 24, 1707-1715 (2007). 
  51. W. Liang, N. Satyan, F. Aflatouni, A. Yariv, A. Kewitsch, G. Rakuljic, and H. Hashemi, "Coherent beam combining with multilevel optical phase-locked loops," J. Opt. Soc. Am. B 24, 2930-2939 (2007). 
  52. S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, C.-C. Shih, D. M. Shimabukuro, M. P. Wacks, M. E. Weber, and G. D. Goodno, "Scalable coherent combining of kilowatt fiber amplifers into a 2.4-kW beam," IEEE J. Sel. Top. Quantum Electron. 20, 0901008 (2014). 
  53. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beamcombined fiber lasers for high-average-power applications," IEEE J. Sel. Top. Quantum Electron. 13, 487-497 (2007). 
  54. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tunnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, "High average power spectral beam combining of four fiber amplifiers to 8.2 kW," Opt. Lett. 36, 3118-3120 (2011). 
  55. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Bruckner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tunnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," Opt. Express 17, 1178-1183 (2009). 
  56. D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, "Ultimate efficiency of spectral beam combining by volume Bragg gratings," Appl. Opt. 52, 7233-7242 (2013). 
  57. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Opt. Lett. 33, 384-386 (2008). 
  58. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, USA, 2007). 
  59. V. Khitrov, K. Farley, R. Leveille, J. Galipeau, I. Majid, S. Christensen, B. Samson, and K. Tankala, "kW level narrow linewidth Yb fiber amplifiers for beam combining" Proc. SPIE 7686, 76860A-1-76860A-8 (2010). 
  60. S. Hadrich, T. Schreiber, T. Pertsch, J. Limpert, T, Peschel, R. Eberhardt, and A. Tunnermann, "Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation," Opt. Express 14, 6091-6097 (2006). 
  61. D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Kilowattclass single-frequency fiber sources," Proc. SPIE 5709, 133-141 (2005). 
  62. http://www.laserfocusworld.com/articles/2015/03/lockheedmartin-s-30-kw-fiber-laser-weapon-disables-truck-from-a-mile-away.html 
  63. http://www.qphotonics.com/Fiber-Coupled-Single-Mode-Laser-Diodes/ 
  64. J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. C. Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, "Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optical parametric amplifiers," Opt. Express 18, 18138-18150 (2010). 
  65. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo- random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). 
  66. A. V. Harish and J. Nilsson, "Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering," Opt. Express 23, 6988-6999 (2015). 
  67. http://www.nufern.com/pam/optical_fibers/933/PLMA-YDF-25_400-VIII/ 
  68. P. P. Lu, A. L. Bullington, P. Beyersdorf, S. Traeger, and J. Mansell, R. Beausoleil, E. K. Gustafson, R. L. Byer, and M. M. Fejer, "Wavefront distortion of the reflected and diffracted beams produced by the thermoelastic deformation of a diffraction grating heated by a Gaussian laser beam," J. Opt. Soc. Am. A 24, 659-668 (2007). 
  69. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). 
  70. O. Schmidt, C. Wirth, D. Nodop, J. Limpert, T. Schreiber, T. Peschel, R. Eberhardt, and A. Tunnermann, "Spectral beam combination of fiber amplified ns-pulses by means of interference filters," Opt. Express 17, 22974-22982 (2009). 
  71. M. Fabert, A. D.-Berthelemot, V. Kermene, and A. Crunteanu, "Temporal synchronization and spectral combining of pulses from fiber lasers Q-switched by independent MEMS micro-mirros," Opt. Express 20, 22895-22901 (2012). 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일