$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고출력 광섬유 레이저 기술의 현황 및 전망
Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper) 원문보기

한국광학회지 = Korean journal of optics and photonics, v.27 no.1, 2016년, pp.1 - 17  

권영철 (서울대학교 전기.정보공학부) ,  박경윤 (서울대학교 전기.정보공학부) ,  이동열 (서울대학교 전기.정보공학부) ,  장한별 (서울대학교 전기.정보공학부) ,  이승종 (서울대학교 전기.정보공학부) ,  루이스 알론소 바즈게즈 주니가 (서울대학교 전기.정보공학부) ,  이용수 (두산 DST 레이저팀) ,  김동환 (두산 DST 레이저팀) ,  김현태 (두산 DST 레이저팀) ,  정윤찬 (서울대학교 전기.정보공학부)

초록
AI-Helper 아이콘AI-Helper

최근 20 여년간의 괄목할만한 발전을 통해 단일 광섬유 레이저의 출력은 이미 kW 수준을 상회하고 있으며, 기존의 벌크 방식 레이저의 대체 기술로서 여전히 학계 및 산업계의 뜨거운 관심을 받고 있다. 본 논문은 이와 같은 광섬유 레이저의 괄목할만한 성장을 가능하게 한, 이터븀(Ytterbium) 혼입 이득 광섬유 사용 방식, 레이저 다이오드 펌프와 이중 클래딩 광섬유 구조를 통한 광학적 펌프 방식, 더 나아가서 양자결함을 최소화 하는 종렬 펌핑 방식 등 그 주요 요소 기술들을 개괄하고, 그 극한적 고출력화에 따른 발진 효율 및 특성 저하, 시스템 열화 및 불안정성 증대 등과 같은 고출력 광섬유 레이저 기술 자체가 직면하고 있는 다양한 기술적 문제점 및 그 완화 방안을 논의한다. 여기에서는 광섬유 레이저의 고출력화와 더불어 야기되는 다양한 형태의 광섬유내 비선형 현상, 광섬유 손상 및 모드 불안정 현상에 대한 논의를 포함한다. 이와 더불어, 전술한 다양한 출력 제한 현상을 극복함과 동시에 광섬유 레이저의 출력을 현격한 수준으로 더욱 증가시키기 위한 대체 방안으로 최근 주목을 많이 받고 있는 다중 빔 결합 기술에 대해 개괄적으로 논의한다. 특히, 분광형 다중 빔 결합 기술의 개념적 시스템 구성 요소 및 각 부문별 요구 기술에 대해 보다 심화된 논점을 둔다. 최종적으로 현 수준을 뛰어 넘는 광섬유 레이저의 출력 증대와 본 기술의 지속적 발전을 위한 앞으로의 발전 방향을 논의한다.

Abstract AI-Helper 아이콘AI-Helper

Over the past two decades, fiber-based lasers have made remarkable progress, now having reached power levels exceeding kilowatts and drawing a huge amount of attention from academy and industry as a replacement technology for bulk lasers. In this paper we review the significant factors that have led...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
레이저 공진기 구조의 발진 방식은? 2에 나타난 바와 같이 레이저 공진기(Laser Oscillator) 구조 및 주공진기 출력 증폭기(Master-Oscillator Power Amplifier: MOPA) 구조의 두 가지 방식으로 구현된다. Figure 2(a)의 레이저 공진기 구조에서는 별도의 외부 입력 신호 광원 없이, 이득 광섬유에서 발생하는 자연 방출(Spontaneous Emission)과 이득 광섬유 양단에 위치해 거울 역할을 하는 되먹임 소자(통상적으로 광섬유 격자 소자가 이용됨)에 의해 특정 신호광이 생성 및 선택되고, 또한, 이 특정 신호광이 반복적으로 공진기 내부에 되먹임되면서 이득 광섬유에서 유도 방출(Stimulated Emission)이 유도되어 최종적으로 공진기 내에서 발진되는 방식이다. 이 때 한 쪽 되먹임 소자는 일정 수준의 투과율을 유지하여 신호광의 일부가 공진기 외부로 출력되도록 한다.
MOPA 구조의 신호광이 단방향으로 진행이 필요해 발생하는 문제와 이에 따라 요구되는 것은? 2(b)의 MOPA 구조에서는 주공진기에서 생성된 저출력 시드(Seed)광이 고출력 증폭을 담당하는 출력 증폭기와 분리되어 순차적으로 증폭되어 고출력화되는 방식을 취하기 때문에, 적합한 특성을 갖는 저출력 주공진기의 선택이 가능하다면 그에 따른 임의의 특성을 갖는 고출력 신호광을 구현하는 데 있어서 더욱 효과적인 방식이다. 그러나, 신호광이 단방향으로 진행해야 하므로, 고출력에서 동작하는 광격리기(Optical Isolator)의 사용이 요구되고, 또한 증폭 단계에서 발생하는 잡음에 의해 신호광이 왜곡될 가능성이 있어, 이에 대한 적절한 조절과 대응이 요구된다. 이러한 레이저 공진기 구조와 MOPA 구조를 통해 구현되는 고출력 광섬유 레이저 시스템의 출력 성장 원동력 요소들을 다음에서 보다 상세히 논의해 보고자 한다.
고출력 광섬유 레이저 시스템의 일반적인 두 가지 구현 방식은? 일반적으로 고출력 광섬유 레이저 시스템은 Fig. 2에 나타난 바와 같이 레이저 공진기(Laser Oscillator) 구조 및 주공진기 출력 증폭기(Master-Oscillator Power Amplifier: MOPA) 구조의 두 가지 방식으로 구현된다. Figure 2(a)의 레이저 공진기 구조에서는 별도의 외부 입력 신호 광원 없이, 이득 광섬유에서 발생하는 자연 방출(Spontaneous Emission)과 이득 광섬유 양단에 위치해 거울 역할을 하는 되먹임 소자(통상적으로 광섬유 격자 소자가 이용됨)에 의해 특정 신호광이 생성 및 선택되고, 또한, 이 특정 신호광이 반복적으로 공진기 내부에 되먹임되면서 이득 광섬유에서 유도 방출(Stimulated Emission)이 유도되어 최종적으로 공진기 내에서 발진되는 방식이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (71)

  1. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. Park, and J.-M. P. Delavaux, "Stable single-mode Erbium fiber-grating laser for digital communication," IEEE J. Lightwave Technol. 11, 2021-2025 (1993). 

  2. L. G. Luo, P. L. Chu, and H. F. Liu, "1-GHz optical communication system using chaos in Erbium-doped fiber lasers," IEEE Photon. Technol. Lett. 12, 269-271 (2000). 

  3. Q. Peng, A. Juzeniene, J. Chen, L. O Svaasand, T. Warloe, K.-E. Giercksky, and J. Moan, "Lasers in medicine," Rep. Prog. Phys. 71, 1-28 (2008). 

  4. N. M. Fried and K. E. Murray, "High-power Thulium fiber laser ablation of urinary tissues at 1.94 ${\mu}m$ ," J. Endourol. 19, 25-31 (2005). 

  5. S. Son, H. Park, and K. H. Lee, "Automated laser scanning system for reverse engineering and inspection," Int. J. Mach. Tools Manuf. 42, 889-897 (2002). 

  6. T. Pfister, L. Buttner, J. Czarske, H. Krain, and R. Schodl, "Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor," Meas. Sci. Technol. 17, 1693-1705 (2006). 

  7. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, "Ultrashort-pulse laser machining of dielectric materials," J. Appl. Phys. 85, 6803-6810 (1999). 

  8. A. N. Samant and N. B. Dahotre, "Laser machining of structural ceramics-a review" J. Eur. Ceram. Soc. 29, 969-993 (2009). 

  9. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). 

  10. J. C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007). 

  11. C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fibre lasers," Nat. Photonics 7, 861-867 (2013). 

  12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997). 

  13. M. E. Fermann and I. Hartl, "Ultrafast fiber laser technology," IEEE J. Sel. Top. Quantum Electron. 15, 191-206 (2009). 

  14. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). 

  15. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-471 (2004). 

  16. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, "Multi-kilowatt single-mode Ytterbium-doped large-core fiber laser," J. Opt. Soc. Korea 13, 416-422 (2009). 

  17. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency Ytterbium-doped fiber master-oscillaotr power-amplifier sources up to 500 W," IEEE J. Sel. Top. Quantum Electron. 13, 546-551 (2007). 

  18. E. Stiles, "New developments in IPG fiber laser technology," in Proceedings of the 5th International Workshop on Fiber Lasers (2009). 

  19. Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, "On the formation of noise-like pulses in fiber ring cavity configurations," Opt. Fiber Technol. 20, 575-592 (2014). 

  20. L. A. Vazquez-Zuniga and Y. Jeong, "Power-scalable, subnanosecond mode-locked erbium-doped fiber laser based on a frequency-shifted-feedback ring cavity incorporating a narrow bandpass filter," J. Opt. Soc. Kor. 17, 177-181 (2013). 

  21. L. A. Vazquez-Zuniga and Y. Jeong, "Wavelength-tunable, passively mode-locked erbium-doped fiber master-oscillator incorporating a semiconductor saturable absorber mirror," J. Opt. Soc. Kor. 17, 117-129 (2013). 

  22. L. A. Vazquez-Zuniga, H. Kim, Y. Kwon, and Y. Jeong, "Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber," Opt. Express 21, 7712-7725 (2013). 

  23. S. Lee, L. A. Vazquez-Zuniga, D. Lee, H. Kim, J. K. Sahu, and Y. Jeong, "Comparative experimental analysis of thermal characteristics of ytterbium-doped phosphosilicate and aluminosilicate fibers," J. Opt. Soc. Kor. 17, 182-187 (2013). 

  24. T. Yao, J. Ji, and J. Nilsson, "Ultra-low quantum-defect heating in Ytterbium-doped Aluminosilicate fibers," IEEE J. Lightwave Technol. 32, 429-434 (2014). 

  25. J. Limpert, F. Roser, T. Schreiber, and A, Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006). 

  26. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008). 

  27. K. Park and Y. Jeong, "A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers," Opt. Express 22, 7932-7946 (2014). 

  28. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010). 

  29. A. Liu, "Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient," Opt. Express 15, 977-984 (2007). 

  30. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, "170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier," Opt. Express 21, 5456-5462 (2013). 

  31. N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," IEEE J. Lightwave Technol. 11, 1518-1522 (1993). 

  32. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, "Simulating and designing Brillouin gain spectrum in single-mode fibers," IEEE J. Lightwave Technol. 22, 631-639 (2004). 

  33. P. D. Dragic, "Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers," Electron. Lett. 48, 1492-1493 (2012). 

  34. L. Dong, "Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs," IEEE J. Lightwave Technol. 28, 3156-3161 (2010). 

  35. D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tunnermann, "Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers," Opt. Lett. 35, 2982-2984 (2010). 

  36. J. Kim, P. Dupriez, C. Codemard, J.Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006). 

  37. X. Ma, I.-N. Hu, and A. Galvanauskas, "Propagation-length independent SRS threshold in chirally-coupled-core fibers," Opt. Express 19, 22575-22581 (2011). 

  38. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, "Peak-power limits on fiber amplifiers imposed by selffocusing," Opt. Lett. 31, 3423-3425 (2006). 

  39. G. Fibich and A. L. Gaeta, "Critical power for self-focusing in bulk media and in hollow waveguides," Opt. Lett. 25, 335-337 (2000). 

  40. A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011). 

  41. C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, "The impact of modal interference on the beam quality of high-power fiber amplifiers," Opt. Express 19, 3258-3271 (2011). 

  42. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Physical origin of mode instabilities in high-power fiber laser systems," Opt. Express 20, 12912-12925 (2012). 

  43. M. Karow, H. Tunnermann, J. Neumann, D. Kracht, and P. Wessels, "Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power," Opt. Lett. 37, 4242-4244 (2012). 

  44. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011). 

  45. A. V. Smith and J. J. Smith, "Increasing mode instability thresholds of fiber amplifers by gain saturation," Opt. Express 21, 15168-15182 (2013). 

  46. C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Passive mitigation strategies for mode instabilities in high-power fiber laser systems," Opt. Express 21, 19375-19386 (2013). 

  47. S. Naderi, I. Dajani, T. Madden, and C. Robin, "Investigation of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express 21, 16111-16129 (2013). 

  48. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Laegsgaard, "Thermally induced mode coupling in rare-earth doped fiber amplifiers" Opt. Lett. 37, 2382-2384 (2012). 

  49. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005). 

  50. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," J. Opt. Soc. Am. B 24, 1707-1715 (2007). 

  51. W. Liang, N. Satyan, F. Aflatouni, A. Yariv, A. Kewitsch, G. Rakuljic, and H. Hashemi, "Coherent beam combining with multilevel optical phase-locked loops," J. Opt. Soc. Am. B 24, 2930-2939 (2007). 

  52. S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, C.-C. Shih, D. M. Shimabukuro, M. P. Wacks, M. E. Weber, and G. D. Goodno, "Scalable coherent combining of kilowatt fiber amplifers into a 2.4-kW beam," IEEE J. Sel. Top. Quantum Electron. 20, 0901008 (2014). 

  53. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beamcombined fiber lasers for high-average-power applications," IEEE J. Sel. Top. Quantum Electron. 13, 487-497 (2007). 

  54. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tunnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, "High average power spectral beam combining of four fiber amplifiers to 8.2 kW," Opt. Lett. 36, 3118-3120 (2011). 

  55. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Bruckner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tunnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," Opt. Express 17, 1178-1183 (2009). 

  56. D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, "Ultimate efficiency of spectral beam combining by volume Bragg gratings," Appl. Opt. 52, 7233-7242 (2013). 

  57. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Opt. Lett. 33, 384-386 (2008). 

  58. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, USA, 2007). 

  59. V. Khitrov, K. Farley, R. Leveille, J. Galipeau, I. Majid, S. Christensen, B. Samson, and K. Tankala, "kW level narrow linewidth Yb fiber amplifiers for beam combining" Proc. SPIE 7686, 76860A-1-76860A-8 (2010). 

  60. S. Hadrich, T. Schreiber, T. Pertsch, J. Limpert, T, Peschel, R. Eberhardt, and A. Tunnermann, "Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation," Opt. Express 14, 6091-6097 (2006). 

  61. D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Kilowattclass single-frequency fiber sources," Proc. SPIE 5709, 133-141 (2005). 

  62. http://www.laserfocusworld.com/articles/2015/03/lockheedmartin-s-30-kw-fiber-laser-weapon-disables-truck-from-a-mile-away.html 

  63. http://www.qphotonics.com/Fiber-Coupled-Single-Mode-Laser-Diodes/ 

  64. J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. C. Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, "Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optical parametric amplifiers," Opt. Express 18, 18138-18150 (2010). 

  65. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo- random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). 

  66. A. V. Harish and J. Nilsson, "Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering," Opt. Express 23, 6988-6999 (2015). 

  67. http://www.nufern.com/pam/optical_fibers/933/PLMA-YDF-25_400-VIII/ 

  68. P. P. Lu, A. L. Bullington, P. Beyersdorf, S. Traeger, and J. Mansell, R. Beausoleil, E. K. Gustafson, R. L. Byer, and M. M. Fejer, "Wavefront distortion of the reflected and diffracted beams produced by the thermoelastic deformation of a diffraction grating heated by a Gaussian laser beam," J. Opt. Soc. Am. A 24, 659-668 (2007). 

  69. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). 

  70. O. Schmidt, C. Wirth, D. Nodop, J. Limpert, T. Schreiber, T. Peschel, R. Eberhardt, and A. Tunnermann, "Spectral beam combination of fiber amplified ns-pulses by means of interference filters," Opt. Express 17, 22974-22982 (2009). 

  71. M. Fabert, A. D.-Berthelemot, V. Kermene, and A. Crunteanu, "Temporal synchronization and spectral combining of pulses from fiber lasers Q-switched by independent MEMS micro-mirros," Opt. Express 20, 22895-22901 (2012). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로