$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전통발효식품 유래 Enterococcus faecium JK29에 의한 γ-aminobutyric acid의 생산 최적화
Optimization of γ-Aminobutyric Acid Production by Enterococcus faecium JK29 Isolated from a Traditional Fermented Foods 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.44 no.1, 2016년, pp.26 - 33  

임희선 (인천대학교 대학원 생명과학과) ,  차인태 (인천대학교 생명공학부) ,  이현진 (인천대학교 대학원 생명과학과) ,  서명지 (인천대학교 대학원 생명과학과)

초록
AI-Helper 아이콘AI-Helper

${\gamma}$-Aminobutyric acid(GABA)를 생산하는 희귀 젖산균을 분리하기 위하여 전통발효식품으로부터 총 147개의 젖산균을 확보한 후 1% 글루탐산 나트륨(L-monosodium glutamate, MSG)를 사용하여 GABA를 생산하는 23개의 균주를 1차 분리하였다. 2차 분리를 위하여 글루탐산 탈탄산효소(glutamate decarboxylase)와 16S rRNA 유전자의 염기서열 분석을 통해 기본 MRS 배지에서 48시간 배양 후 1.56 mM의 GABA를 생산하는 Enterococcus faecium JK29를 최종 분리하였다. E. faecium JK29에 의한 GABA의 생산을 향상시키기 위하여 배양 조건을 최적화하였으며 그 결과 0.5% 자당(sucrose), 2% 효모 추출물(yeast extract), 0.5% 글루탐산 나트륨이 포함된 최적화 MRS 배지를 개발하였다. 최적화 MRS 배지를 활용하여 $30^{\circ}C$, pH 7.5에서 48시간 배양을 한 결과 E. faecium JK29이 14.86 mM의 GABA를 생산하는 것을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Dominant lactic acid bacteria (LAB) strains were isolated from traditional fermented foods to obtain rare ${\gamma}$-aminobutyric acid (GABA)-producing LAB. Out of 147 isolates, 23 strains that could produce GABA with 1% (w/v) L-monosodium glutamate (MSG) were first isolated. After furthe...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • GABA production is generally affected by nutritional factors for GABA-producer and culture conditions, and these factors should be thus taken into account in the design of optimal GABA production for the application of industrial fields [13]. Accordingly, this study also describes the culture optimization of E. faecium JK29 for high GABA production by determining the optimal carbon and nitrogen sources, initial pH and exogenous L-monosodium glutamate (MSG) concentration.
  • After isolating E. faecium strains, the full-length gad gene from genomic DNA of E. faecium was amplified by using the following primer sets designed for the previously reported E. faecium gad gene sequences: sets MME-61 (5'-ATGTTATACGGAAAAGATAATCAAGAAG-3') and MME-62 (5'-TTAGTGAGTAAAGCCGTACGT-3').
  • Each strain was then identified by polymerase chain reaction (PCR) amplification of the 16S rRNA genes from each genomic DNA using the universal primer sets 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-CGGTTACCTTGTTACGACTT-3').

대상 데이터

  • 0% (data not shown). Since this study was focused on rare LABs producing GABA, we could select 11 LABs excluding Lactobacillus strains. The quantitative analysis of GABA concentration produced from 11 LABs showed that Enterococcus-genus strains produced more GABA with compared to Leuconostoc strains (data not shown).
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Abe Y, Umemura S, Sugimoto K, Hirawa N, Kato Y, Yokoyama N, et al. 1995. Effect of green tea rich in γ-aminobutyric acid on blood pressure of Dahl salt-sensitive rats. Am. J. Hypertens. 8: 74–79. 

  2. Binh TTT, Ju WT, Jung WJ, Park RD. 2014. Optimization of γ-aminobutyric acid production in a newly isolated Lactobacillus brevis. Biotechnol. Lett. 36: 93–98. 

  3. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. 1999. Control of acid resistance in Escherichia coli. J. Bacteriol. 181: 3525–3535. 

  4. Cho YR, Chang JY, Chang HC. 2007. Production of γ-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17: 104–109. 

  5. Divyashri G, Prapulla SG. 2015. An insight into kinetics and thermodynamics of gamma-aminobutyric acid production by Enterococcus faecium CFR 3003 in batch fermentation. Ann. Microbiol. 65: 1109–1118. 

  6. Hiraga K, Ueno Y, Sukontasing S, Tanasupawat S, Oda K. 2008. Lactobacillus senmaizukei sp. nov., isolated from Japanses pickle. Int. J. Syst. Evol. Microbiol. 58: 1652–1629. 

  7. Holdiness MR. 1983. Chromatographic analysis of glutamic acid decarboxylase in biological samples. J. Chromatogr. 14: 1–24. 

  8. Hwanhlem N, Watthanasakphuban N, Riebroy S, Benjakul S, HKittikun A, Maneerat S. 2010. Probiotic lactic acid bacteria from Kung-Sum: isolation, screening, inhibition of pathogenic bacteria. Int. J. Food Sci. Technol. 45: 594–601. 

  9. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, et al. 2003. Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57: 490–495. 

  10. Jakobs C, Jaeken J, Gibson KM. 1993. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16: 704–715. 

  11. Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT. 2009. Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130: 12–16. 

  12. Kook MC, Cho SC, Cheigh CI, Park H, Kim SS, Jeong MH, et al. 2009. Study of γ-amino butyric acid (GABA) production by Lactobacillus sakei B2-16. Food Eng. Prog. 13: 183–189. 

  13. Kook MC, Seo MJ, Cheigh CI, Pyun YR, Cho SC, Park H. 2010. Enhanced production of γ-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol. 20: 763–766. 

  14. Lee JY, Kim CJ, Kunz B. 2006. Identification of lactic acid bacteria isolated from kimchi and studies on their suitability for application of as starter culture in the production fermented sausages. Meat Sci. 72: 437–445. 

  15. Leory F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67–78. 

  16. Li H, Qiu T, Gao D, Cao Y. 2010. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38: 1439–1445. 

  17. Manyam BV, Katz L, Hare TA, Kaniefski K, Tremblay RD. 1981. Isoniazid induced elevation of cerebrospinal fluid (CSF) GABA levels and effects on chorea in Huntington’s disease. Ann. Neurol. 10: 35–37. 

  18. Masuda K, Guo XF, Uryu N, Hagiwara T, Watabe S. 2008. Isolation of marine yeasts collected from the Pacific ocean showing a high production of γ-aminobutyric acid. Biosci. Biotechnol. Biochem. 72: 3265–3272. 

  19. Naidu AS, Bidlack WR, Clemens RA. 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 38: 13–126. 

  20. Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I. 1998. Production of γ-aminobutyric acid by cheese starters during cheese ripening. J. Dairy Sci. 81: 1486–1491. 

  21. Sanders JW, Leehouts K, Burghoorn J, Brands R, Venema G, Kok J. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299–310. 

  22. Seo MJ, Lee JY, Nam YD, Lee SY, Park SL, Yi SH, et al. 2013. Production of γ-aminobutyric acid by Lactobacillus brevis 340G isolated from kimchi and its application to skim milk. Food Eng. Prog. 17: 418–423. 

  23. Siragusa S, Angelis MD, Cagno RD, Rizzello CG, Coda R, Gobbetti M. 2007. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 73: 7283–7290. 

  24. Tajabadi N, Ebrahimpour A, Baradaran A, Rahim RA, Mahyudin NA, Manap MYA, et al. 2015. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules 20: 6654–6669. 

  25. Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, et al. 2010. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biol. Pharm. Bull. 33: 1673-1679. 

  26. Tsai JS, Lin YS, Pan BS, Chen TJ. 2006. Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochem. 41: 1282–1288. 

  27. Wong CG, Bottiglieri T, Snead OC III. 2003. GABA, γ-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54: S3–S12. 

  28. Yang H, Xing R, Hu L, Liu S, Li P. 2015. Accumulation of γ-aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy. Microb. Biotechnol. in press. 

  29. Yang SY, Lü FX, Lu ZX, Bie XM, Jiao Y, Sun LJ, et al. 2008. Production of γ-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34: 473–478. 

  30. Yokoyama S, Hiramatsu J, Hayakawa K. 2002. Production of γ- aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J. Biosci. Bioeng. 93: 95–97. 

  31. Zhang G, Brown AW. 1997. The rapid determination of γ-aminobutyric acid. Phytochemistry 44: 1007–1009. 

  32. Zhang X, Bierschenk D, Top J, Anastasiou I, Bonten MJ, Willems RJ, et al. 2013. Functional genomic analysis of bile salt resistance in Enterococcus faecium. BMC Genomics 14: 299-306. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로