$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

코플라 함수를 활용한 이변량 가뭄빈도해석을 통한 우리나라 가뭄 위험도 산정
Estimation of drought risk through the bivariate drought frequency analysis using copula functions 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.49 no.3, 2016년, pp.217 - 225  

유지수 (한양대학교 대학원 건설환경공학과) ,  유지영 (전북대학교 토목공학과) ,  이주헌 (중부대학교 토목공학과) ,  김태웅 (한양대학교 공학대학 건설환경플랜트공학과)

초록
AI-Helper 아이콘AI-Helper

가뭄은 지속기간과 심도의 두 가지 변량으로 특징지어지는 수문사상이므로 가뭄 지속기간과 심도를 동시에 고려하는 이변량 가뭄빈도해석이 요구된다. 그러나 이변량 결합 확률분포3차원의 분포형태를 나타내어 실무에서 분석과 활용이 불편하다는 단점이 있다. 이를 보완하기 위해 본 연구에서는 코플라 함수를 활용하여 이변량 결합 확률분포함수를 추정한 후, 지속기간별 조건부 확률분포함수를 산정하였고, 비초과확률에 따른 임계심도를 결정하였다. 과거 극심했던 가뭄사상들을 바탕으로 95% 비초과확률에 해당하는 임계심도를 갖는 극한 가뭄사상에 대하여 수문학적 위험도를 산정하였다. 10개월 지속기간을 가지는 가뭄사상의 경우, 가뭄위험도가 가장 높은 지역은 광주, 인제, 울진으로 전국 평균에 비해 1.3-2.0배 높은 가뭄발생확률을 나타내었다. 또한, 남부지역이 중부와 북부지역보다 더 높은 가뭄 취약성을 갖는다는 것을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

The drought is generally characterized by duration and severity, thus it is required to conduct the bivariate frequency analysis simultaneously considering the drought duration and severity. However, since a bivariate joint probability distribution function (JPDF) has a 3-dimensional space, it is di...

주제어

참고문헌 (20)

  1. American Meteorological Society (2013). Annual Report 2013, American Meteorological Society, Boston. 

  2. Chen, L., Singh, V.P., Guo, S., Mishra, A.K., and Guo, J. (2013). "Drought analysis using copulas." Journal of Hydrologic Engineering, Vol. 18, pp. 797-808. 

  3. Ganguli, P., and Reddy, M.J. (2012). "Risk assessment of droughts in Gujarat using bivariate copulas." Water Resources Management, Vol. 26, pp. 3301-3327. 

  4. Gonzalez, J., and Valdes, J.B. (2003). "Bivariate drought recurrence analysis using tree ring reconstructions." Journal of Hydrologic Engineering, Vol. 8, No. 5, pp. 247-258. 

  5. Halwatura, D., Lechner, A.M., and Arnold, S. (2015). "Drought severity-duration-frequency curves: a foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscape." Hydrology and Earth System Sciences, Vol. 19, pp. 1069-1091. 

  6. Kim, T.W., Valdes, J.B., and Yoo, C. (2003). "Nonparametric approach for estimating return period of droughts in arid regions." Journal of Hydrologic Engineering, Vol. 8, No. 5, pp. 237-246. 

  7. Kwak, J.W., Kim, D.G., Lee, J.S., and Kim, H.S. (2012). "Hydrological drought analysis using copula theory." Journal of the Korea Society of Civil Engineers, Vol. 32, No. 3B, pp. 161-168. 

  8. Lall, U., Moon, Y.I., and Bosworth, K. (1993). "Kernel flood frequency estimator: bandwidth selection and kernel choice." Water Resources Research, Vol. 29, No. 4, pp. 1003-1015. 

  9. Lee, J.H., and Kim, C.J. (2011). "Derivation of drought severity-duration-frequency curves using drought frequency analysis." Journal of Korea Water Resource Association, Vol. 44, No. 11, pp. 889-902. 

  10. Ministry of Construction and Transportation (1995). Drought Record and Research Report 1995. 

  11. Nelson, R.B. (1999). An Introduction to Copulas. Springer, New York. 

  12. Shiau, J.T. (2003). "Return period of bivariate distributed hydrologic events." Stochastic Environmental Research and Risk Assessment, Vol. 17, No. 1-2, pp. 42-57. 

  13. Shiau, J.T. (2006). "Fitting drought duration and severity with two-dimensional copulas." Water Resources Management, Vol. 20, pp. 795-815. 

  14. Yevjevich, V.M. (1967). Objective approach to definitions and investigations of continental hydrologic droughts. Hydrology Paper 23, Colorado State U. Fort Collins. 

  15. Yoo, J.Y., Kwon, H.H, Lee, J.H., and Kim, T.W. (2015). "Influence of evapotranspiration on future drought risk using bivariate drought frequency curves." Journal of Civil Engineering, KSCE, doi: 10.1007/s12205-015-0078-9. 

  16. Yoo, J.Y., Shin, J.Y., Kim, D., and Kim, T.-W. (2013). "Drought risk analysis using stochastic rainfall generation model and copula functions." Journal of Korea Water Resources Association, Vol. 46, No. 4, pp. 425-437. 

  17. Yue, S., Ouarda, T.B.M.J., Bobee, B., Legendre, P., and Bruneau, P. (1999). "The Gumbel mixed model for flood frequency analysis." Journal of Hydrologic Engineering, Vol. 226, pp.88-100. 

  18. Zhang, L., and Singh, V.P. (2006). "Bivariate flood frequency analysis using the copula method." Journal of Hydrologic Engineering, Vol. 11, pp. 150-164. 

  19. Zhang, Q., Xiao, M., Singh, V.P., and Chen, X. (2013). "Copula-based risk evaluation of droughts across the Pearl River basin, China." Theoretical and Applied Climatology, Vol. 111, pp. 119-131. 

  20. Zimmer, D.M., and Trivedi, P.K. (2006). "Using trivariate copulas to model sample selection and treatment effects: application to family health care demand." Journal of Business and Economic Statistics, Vol. 24, No. 1, pp. 63-76. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로