$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고성능 탄화수소계 고분자 전해질막의 합성 전략
Synthetic Strategies for High Performance Hydrocarbon Polymer Electrolyte Membranes (PEMs) for Fuel Cells 원문보기

멤브레인 = Membrane Journal, v.26 no.1, 2016년, pp.1 - 13  

이소영 (한국과학기술연구원 연료전지센터) ,  김형준 (한국과학기술연구원 연료전지센터) ,  남상용 (경상대학교나노신소재융합공학과, 공학연구원) ,  박치훈 (경남과학기술대학교 에너지공학과)

초록
AI-Helper 아이콘AI-Helper

연료전지는 화석연료, 특히 내연기관을 대체할 수 있는 가장 대표전인 에너지 기술이다. 가장 중요한 핵심 재료 중 하나로서 연료기체의 장벽 역할을 함과 동시에 수소이온전달 역할을 하는 고분자 전해질 막(PEM)이 있다. PEM 내부에서 수화 채널은 수소이온의 전달통로 역할을 하기 때문에, 많은 연구자들은 높은 함수율을 저가습 상태에서도 유지하여 우수한 수소이온 전달 능력을 보유할 수 있는 상분리현상을 통한 친수성 채널 형성에 대하여 초점을 맞추어 왔다. 본 총설에서는 이러한 낮은 가습조건에서도 높은 수소이온전도도를 갖는 술폰화 PEM들의 합성 전략에 대하여 논의 하여보고, 다른 연구자들의 고성능 탄화수소계 PEM의 설계에 도움을 주고자 하였다.

Abstract AI-Helper 아이콘AI-Helper

Fuel cells are regarded as a representative energy source expected to replace fossil fuels particularly used in internal combustion engines. One of the most important components is polymer electrolyte membranes (PEMs) acting as a proton conducting barrier to prevent fuel gas crossover. Since water c...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • [32]. studied the effect of molecular weights of poly(p-phenylene) on their properties for PEMs, and concluded that high molecular weight poly(p-phenylene) could retain high IEC values and high proton conductivities without loss of mechanical properties and dimensional stability.
  • [40]. studied the properties of an alternating sulfonated poly(arylene ether ketone), a random sulfonated poly(arylene ether sulfone), and a multiblock copolymer of sulfonated poly(arylene ether sulfone) and polyimide. The multiblock copolymer outperformed both the others in proton conductivity and fuel cell performance, as it showed a well-defined structure with continuous hydrophilic and hydrophobic pathways responsible for fast proton transport.
본문요약 정보가 도움이 되었나요?

참고문헌 (55)

  1. L. Maugeri, "Understanding oil price behavior through an analysis of a crisis", Rev. Environ. Econ. Policy, 3, 147 (2009). 

  2. J. A. Cook, C. R. Ramsay, and P. Fayers, "Using the literature to quantify the learning curve: A case study", Int. J. Technol. Assess. Health Care, 24, 131 (2008). 

  3. R. Wycisk and P. Pintauro, "Fuel cells II", pp.157-183, Springer, Heidelberg (2008). 

  4. H. R. Allcock, "Recent developments in polyphosphazene materials science", Curr. Opin. Solid State Mater. Sci., 10, 231 (2006). 

  5. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative polymer systems for proton exchange membranes (PEMs)", Chem. Rev., 104, 4587 (2004). 

  6. M. Kim, Y. Lee, J. Kim, H. Kim, T. Lim, and I. Moon, "Multiscale modeling and simulation of direct methanol fuel cell", Membr. J., 20, 29 (2010). 

  7. K.-D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, A new model for the interpretation of the conductivity of fast proton conductors", Angew. Chem. Int. Edit., 21, 208 (1982). 

  8. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). 

  9. K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 4535 (2004). 

  10. N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, and M. D. Guiver, "Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s", Angew. Chem. Int. Edit., 50, 9158 (2011). 

  11. K. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, Y. T. Hong, and H. Byun, "Fabrication and characterization of partially covalent-crosslinked poly(arylene ether sulfone)s for use in a fuel cell", Membr. J., 18, 274 (2008). 

  12. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membr. J., 21, 389 (2011). 

  13. C. H. Park, H. S. Kim, and Y. M. Lee, "Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica", Membr. J., 24, 301 (2014). 

  14. K.-K. Lee, T.-H. Kim, T.-S. Hwang, and Y. T. Hong, "Novel sulfonated poly(arylene ether sulfone) composite membranes containing tetraethyl orthosilicate (TEOS) for PEMFC applications", Membr. J., 20, 278 (2010). 

  15. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membr. J., 21, 389 (2011). 

  16. D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012). 

  17. G. Maier and J. Meier-Haack, "Fuel cells II", pp.1-62, Springer, Heidelberg (2008). 

  18. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, "Membranes from sulfonated block copolymers for use in fuel cells", Sep. Purif. Technol., 41, 207 (2005). 

  19. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000). 

  20. K. D. Kreuer, "Hydrocarbon membranes", Handbook of Fuel Cells, 3, 420 (2003). 

  21. J. Roziere and D. J. Jones, "Non-fluorinated polymer materials for proton exchange membrane fuel cells", Annu. Rev. Mater. Res., 33, 503 (2003). 

  22. R. Y. M. Huang, P. Shao, C. M. Burns, and X. Feng, "Sulfonation of poly(ether ether ketone)(PEEK): Kinetic study and characterization", J. Appl. Polym. Sci., 82, 2651 (2001). 

  23. B. Yang and A. Manthiram, "Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells", Electrochem. Solid-State Lett., 6, A229 (2003). 

  24. K. Miyatake, T. Yasuda, and M. Watanabe, "Substituents effect on the properties of sulfonated polyimide copolymers", J. Polym. Sci., Part A: Polym. Chem., 46, 4469 (2008). 

  25. S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, and A. S. Hay, "Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: Novel linear aromatic poly(sulfide-ketone)s", Macromolecules, 41, 277 (2007). 

  26. S. Matsumura, A. R. Hlil, N. Du, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, and A. S. Hay, "Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s with 3,6-ditrityl-9H-carbazole end-groups", J. Polym. Sci., Part A: Polym. Chem., 46, 3860 (2008). 

  27. M. A. Abu-Saied, A. A. Elzatahry, K. M. El-Khatib, E. A. Hassan, M. M. El-Sabbah, E. Drioli, and M. S. M. Eldin, "Preparation and characterization of novel grafted cellophane-phosphoric acid-doped membranes for proton exchange membrane fuel-cell applications", J. Appl. Polym. Sci., 123, 3710 (2012). 

  28. J. Ding, C. Chuy, and S. Holdcroft, "Solid polymer electrolytes based on ionic graft polymers: Effect of graft chain length on nano-structured, ionic networks", Adv. Funct. Mater., 12, 389 (2002). 

  29. J. Parvole and P. Jannasch, "Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state", Macromolecules, 41, 3893 (2008). 

  30. S. Seesukphronrarak and A. Ohira, "Novel highly proton conductive sulfonated poly(p-phenylene) from 2,5-dichloro-4-(phenoxypropyl)benzophenone as proton exchange membranes for fuel cell applications", Chem. Commun., 4744 (2009). 

  31. S. Seesukphronrarak, K. Ohira, K. Kidena, N. Takimoto, C. S. Kuroda, and A. Ohira, "Synthesis and properties of sulfonated copoly(p-phenylene)s containing aliphatic alkyl pendant for fuel cell applications", Polymer, 51, 623 (2010). 

  32. I. Tonozuka, M. Yoshida, K. Kaneko, Y. Takeoka, and M. Rikukawa, "Considerations of polymerization method and molecular weight for proton-conducting poly(p-phenylene) derivatives", Polymer, 52, 6020 (2011). 

  33. D. S. Kim, G. P. Robertson, Y. S. Kim, and M. D. Guiver, "Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes", Macromolecules, 42, 957 (2009). 

  34. T. B. Norsten, M. D. Guiver, J. Murphy, T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, and J. Ding, "Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): Improving PEM properties through rational design", Adv. Funct. Mater., 16, 1814 (2006). 

  35. B. Lafitte, M. Puchner, and P. Jannasch, "Proton conducting polysulfone ionomers carrying sulfoaryloxybenzoyl side chains", Macromol. Rapid Commun., 26, 1464 (2005). 

  36. N. Li, D. W. Shin, D. S. Hwang, Y. M. Lee, and M. D. Guiver, "Polymer electrolyte membranes derived from new sulfone monomers with pendent sulfonic acid $groups^{\dagger}$ ", Macromolecules, 43, 9810 (2010). 

  37. C. Wang, N. Li, D. W. Shin, S. Y. Lee, N. R. Kang, Y. M. Lee, and M. D. Guiver, "Fluorene-based poly(arylene ether sulfone)s containing clustered flexible pendant sulfonic acids as proton exchange membranes", Macromolecules, 44, 7296 (2011). 

  38. Y. A. Elabd, E. Napadensky, C. W. Walker, and K. I. Winey, "Transport properties of sulfonated poly(styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities", Macromolecules, 39, 399 (2005). 

  39. J.-H. Choi, C. L. Willis, and K. I. Winey, "Structure-property relationship in sulfonated pentablock copolymers", J. Membr. Sci., 394-395, 169 (2012). 

  40. M. L. Einsla, Y. S. Kim, M. Hawley, H.-S. Lee, J. E. McGrath, B. Liu, M. D. Guiver, and B. S. Pivovar, "Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity", Chem. Mater., 20, 5636 (2008). 

  41. H. Ghassemi, J. E. McGrath, and T. A. Zawodzinski Jr, "Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell", Polymer, 47, 4132 (2006). 

  42. K. Matsumoto, T. Higashihara, and M. Ueda, "Star-shaped sulfonated block copoly(ether ketone)s as proton exchange membranes", Macromolecules, 41, 7560 (2008). 

  43. X. Yu, A. Roy, S. Dunn, J. Yang, and J. E. McGrath, "Synthesis and characterization of sulfonated-fluorinated, hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes", Macromol. Symp., 245-246, 439 (2006). 

  44. H.-Y. Lee, I. Bae, and K.-H. Min, "Solvent effect on sulfur ylide mediated epoxidation reaction", Bull. Korean Chem. Soc., 28, 2051 (2007). 

  45. A. Roy, M. A. Hickner, X. Yu, Y. Li, T. E. Glass, and J. E. McGrath, "Influence of chemical composition and sequence length on the transport properties of proton exchange membranes", J. Polym. Sci., Part B: Polym. Phys., 44, 2226 (2006). 

  46. H.-S. Lee, A. S. Badami, A. Roy, and J. E. McGrath, "Segmented sulfonated poly(arylene ether sulfone)-b-polyimide copolymers for proton exchange membrane fuel cells. I. Copolymer synthesis and fundamental properties", J. Polym. Sci., Part A: Polym. Chem., 45, 4879 (2007). 

  47. H.-S. Lee, A. Roy, O. Lane, S. Dunn, and J. E. McGrath, "Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells", Polymer, 49, 715 (2008). 

  48. B. Bae, K. Miyatake, and M. Watanabe, "Synthesis and properties of sulfonated block copolymers having fluorenyl groups for fuel-cell applications", ACS Appl. Mater. Interfaces, 1, 1279 (2009). 

  49. B. Bae, T. Yoda, K. Miyatake, H. Uchida, and M. Watanabe, "Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells", Angew. Chem. Int. Ed., 49, 317 (2010). 

  50. K. Nakabayashi, T. Higashihara, and M. Ueda, "Polymer electrolyte membranes based on cross-linked highly sulfonated multiblock copoly(ether sulfone)s", Macromolecules, 43, 5756 (2010). 

  51. S. Takamuku and P. Jannasch, "Fully aromatic block copolymers for fuel cell membranes with densely sulfonated nanophase domains", Macromol. Rapid Commun., 32, 474 (2011). 

  52. S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, and A. S. Hay, "Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: Novel branched poly(ether-ketone)s", Macromolecules, 41, 281 (2007). 

  53. S. Tian, Y. Meng, and A. S. Hay, "Membranes from poly(aryl ether)-based ionomers containing randomly distributed nanoclusters of 6 or 12 sulfonic acid groups", Macromolecules, 42, 1153 (2009). 

  54. K. Matsumoto, T. Higashihara, and M. Ueda, "Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane", Macromolecules, 42, 1161 (2009). 

  55. K. Matsumoto, T. Higashihara, and M. Ueda, "Locally sulfonated poly(ether sulfone)s with highly sulfonated units as proton exchange membrane", J. Polym. Sci., Part A: Polym. Chem., 47, 3444 (2009). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로