$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

자연계에 존재하는 다기능성 소재 : 멜라닌
Melanin: A Naturally Existing Multifunctional Material 원문보기

공업화학 = Applied chemistry for engineering, v.27 no.2, 2016년, pp.115 - 122  

엄태식 (인하대학교 화학공학과) ,  우경배 (인하대학교 화학공학과) ,  심봉섭 (인하대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

사람의 머리카락, 눈, 피부 등에서 발견되는 멜라닌은 자연의 생물체에 존재하는 어두운 색소를 가르치는 통칭이다. 멜라닌은 자유 라디컬을 흡수해서 제거하는 특성을 가지고 있어, 해로운 UV 광선이 생체로 침투할 때, 세포 및 조직을 보호하는 역할을 한다. 또한, 전기적 전도성 및 이온 전도성을 가지고 있으며, 항산화성, 젖은 상태에서의 접착성, 금속이온 킬레이팅 등 다기능성으로 인해, 다양한 분야에서의 응용이 주목받고 있다. 자연계에 존재하는 생체 멜라닌의 구조를 정확하게 정의할 수는 없지만, 멜라닌의 응용 분야는 센서, 의료기기 등으로 확대되고 있다. 본 미니총설에서는 멜라닌의 원천과 합성, 구조와 특성, 그리고 다양한 분야로의 응용 가능성에 대해서 구체적으로 논의한다.

Abstract AI-Helper 아이콘AI-Helper

Melanin is a common name used for a certain type of natural dark pigments existing in living organisms, particularly in human hair, eyes, and skin. The unique free radical scavenging effect of melanine could help protecting cells and tissues from harmful UV light. While their exact molecular structu...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Thus, the unprecedentedly wide ranges of melanin applications include sensors, batteries, supercapacitors, solar cells, drug delivery, bioimaging, diagnosis, tissue engineering, and medical implants. The purpose of this review is to present the recent research trends of melanin by elucidating molecular structures functional properties, and devices applications, and to encourage the researches of this material.
본문요약 정보가 도움이 되었나요?

참고문헌 (43)

  1. P. A. Riley, Melanin, Int. J. Biochem. Cell Biol., 29(11), 1235-1239 (1997). 

  2. M. d'Ischia, K. Wakamatsu, A. Napolitano, S. Briganti, J.-C. Garcia-Borron, D. Kovacs, P. Meredith, A. Pezzella, M. Picardo, T. Sarna, J. D. Simon, and S. Ito, Melanins and melanogenesis: Methods, standards, protocols, Pigment Cell Melanoma Res., 26(5), 616-633 (2013). 

  3. F. Solano, Melanins: Skin pigments and much more-types, structural models, biological functions, and formation routes, New J. Sci., 2014, 1-28 (2014). 

  4. V. P. Grishchuk, S. A. Davidenko, I. D. Zholner, A. B. Verbitskii, M. V. Kurik, and Y. P. Piryatinskii, Optical absorption and luminescent properties of melanin films, Tech. Phys. Lett., 28(11), 896-898 (2002). 

  5. V. Capozzi, G. Perna, P. Carmone, A. Gallone, M. Lastella, E. Mezzenga, G. Quartucci, M. Ambrico, V. Augelli, P. F. Biagi, T. Ligonzo, A. Minafra, L. Schiavulli, M. Pallara, and R. Cicero, Optical and photoelectronic properties of melanin, Thin Solid Films, 511, 362-366 (2006). 

  6. M. R. Powell and B. Rosenberg, The nature of the charge carriers in solvated biomacromolecules: DNA and water, Biopolymers, 9(11), 1403-1406 (1970). 

  7. J. E. McGinness, Mobility gaps: A mechanism for band gaps in melanins, Science, 177(4052), 896-897 (1972). 

  8. J. McGinness, P. Corry, and P. Proctor, Amorphous semiconductor switching in melanins, Science, 183(4127), 853-855 (1974). 

  9. P. B. Capelletti, P. R. Crippa, and N. Romeo, Electrical characteristics and electret behavior of melanin, ECS J. Solid State Sci. Technol., 126(7), 1207-1212 (1979). 

  10. W. Osak, K. Tkacz, H. Czternastek, and J. Slawinski, I - V Characteristics and electrical conductivity of synthetic melanin, Biopolymers, 28(11), 1885-1890 (1989). 

  11. T. Ligonzo, M. Ambrico, V. Augelli, G. Perna, L. Schiavulli, M. A. Tamma, P. F. Biagi, A. Minafra, and V. Capozzi, Electrical and optical properties of natural and synthetic melanin biopolymer, J. Non-Cryst. Solids, 355(22-23), 1221-1226 (2009). 

  12. C. J. Bettinger, P. P. Bruggeman, A. Misra, J. T. Borenstein, and R. Langer, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering, Biomaterials, 30(17), 3050-3057 (2009). 

  13. M. Rozanowska, T. Sarna, E. J. Land, and T. G. Truscott, Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals, Free Radic. Biol. Med., 26(5-6), 518-525 (1999). 

  14. C. C. Felix, J. S. Hyde, T. Sarna, and R. C. Sealy, Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals, J. Am. Chem. Soc., 100(12), 3922-3926 (1978). 

  15. M. d'Ischia, A. Napolitano, A. Pezzella, P. Meredith, and T. Sarna, Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials, Angew. Chem. Int. Ed., 48(22), 3914-3921 (2009). 

  16. Y. Liu and J. D. Simon, The effect of preparation procedures on the morphology of melanin from the ink sac of Sepia officinalis, Pigment Cell Res., 16(1), 72-80 (2003). 

  17. M. d'Ischia, A. Napolitano, V. Ball, C.-T. Chen, and M. J. Buehler, Polydopamine and eumelanin: From etructure-property relationships to a unified tailoring strategy, Acc. Chem. Res., 47(12), 3541-3550 (2014). 

  18. J. P. Bothma, J. de Boor, U. Divakar, P. E. Schwenn, and P. Meredith, Device-quality electrically conducting melanin thin films, Adv. Mater., 20(18), 3539-3542 (2008). 

  19. M. I. N. da Silva, S. N. Deziderio, J. C. Gonzalez, C. F. O. Graeff, and M. A. Cotta, Synthetic melanin thin films: Structural and electrical properties, J. Appl. Phys., 96(10), 5803-5807 (2004). 

  20. Y. Liu, K. Ai, and L. Lu, Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev., 114(9), 5057-5115 (2014). 

  21. I. G. Kim, H. J. Nam, H. J. Ahn, and D.-Y. Jung, Electrochemical growth of synthetic melanin thin films by constant potential methods, Electrochim. Acta, 56(7), 2954-2959 (2011). 

  22. K. Kang, S. Lee, R. Kim, I. S. Choi, and Y. Nam, Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces, Angew. Chem. Int. Ed., 51(52), 13101-13104 (2012). 

  23. Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices, Proc. Natl. Acad. Sci. USA, 110(52), 20912-20917 (2013). 

  24. M. L. Wolbarsht, A. W. Walsh, and G. George, Melanin, a unique biological absorber, Appl. Opt., 20(13), 2184-2186 (1981). 

  25. M. A. Rosei, L. Mosca, and F. Galluzzi, Photoelectronic properties of synthetic melanins, Synth. Met., 76(1-3), 331-335 (1996). 

  26. A. B. Mostert, B. J. Powell, F. L. Pratt, G. R. Hanson, T. Sarna, I. R. Gentle, and P. Meredith, Role of semiconductivity and ion transport in the electrical conduction of melanin, Proc. Natl. Acad. Sci. USA, 109(23), 8943-8947 (2012). 

  27. C.-T. Chen, V. Ball, J. J. de Almeida Gracio, M. K. Singh, V. Toniazzo, D. Ruch, and M. J. Buehler, Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: Experiment, simulation, and design, ACS Nano, 7(2), 1524-1532 (2013). 

  28. J. Wuensche, F. Cicoira, C. F. O. Graeff, and C. Santato, Eumelanin thin films: Solution-processing, growth, and charge transport properties, J. Mater. Chem. B, 1(31), 3836-3842 (2013). 

  29. D. Kai, M. P. Prabhakaran, G. Jin, and S. Ramakrishna, Biocompatibility evaluation of electrically conductive nanofibrous scaffolds for cardiac tissue engineering, J. Mater. Chem. B, 1(17), 2305-2314 (2013). 

  30. V. Gargiulo, M. Alfe, R. Di Capua, A. R. Togna, V. Cammisotto, S. Fiorito, A. Musto, A. Navarra, S. Parisi, and A. Pezzella, Supplementing pi-systems: eumelanin and graphene-like integration towards highly conductive materials for the mammalian cell culture bio-interface, J. Mater. Chem. B, 3(25), 5070-5079 (2015). 

  31. J. Borovansky, M. Elleder, Melanosome degradation: Fact or fiction, Pigment Cell Res., 16(3), 280-286 (2003). 

  32. D. J. Kim, K. Y. Ju, and J. K. Lee, The synthetic melanin nanoparticles having an excellent binding capacity of heavy metal ions, Bull. Korean Chem. Soc., 33(11), 3788-3792 (2012). 

  33. D. Wang, C. Chen, X. Ke, N. Kang, Y. Shen, Y. Liu, X. Zhou, H. Wang, C. Chen, and L. Ren, Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system, ACS Appl. Mater. Interfaces, 7(5), 3030-3040 (2015). 

  34. K. Shanmuganathan, J. H. Cho, P. Iyer, S. Baranowitz, and C. J. Ellison, Thermooxidative stabilization of polymers using natural and synthetic melanins, Macromolecules, 44(24), 9499-9507 (2011). 

  35. M. Araujo, R. Viveiros, T. R. Correia, I. J. Correia, V. D. B. Bonifacio, T. Casimiro, and A. Aguiar-Ricardo, Natural melanin: A potential pH-responsive drug release device, Int. J. Pharm., 469(1), 140-145 (2014). 

  36. M. P. da Silva, J. C. Fernandes, N. B. de Figueiredo, M. Congiu, M. Mulato, and C. F. de Oliveira Graeff, Melanin as an active layer in biosensors, AIP Adv., 4(3), 037120-1-8 (2014). 

  37. F. Bernsmann, B. Frisch, C. Ringwald, and V. Ball, Protein adsorption on dopamine-melanin films: Role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption, J. Colloid Interface Sci., 344(1), 54-60 (2010). 

  38. T.-F. Wu and J.-D. Hong, Synthesis of water-soluble dopamine-melanin for ultrasensitive and ultrafast humidity sensor, Sens. Actuators B Chem., 224, 178-184 (2016). 

  39. M. D. Rubianes, A. Sanchez Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, and G. Rivas, Carbon nanotubes paste electrodes modified with a melanic polymer: Analytical applications for the sensitive and selective quantification of dopamine, Sens. Actuators B Chem., 144(1), 274-279 (2010). 

  40. Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells, Adv. Mater., 26(38), 6572-6579 (2014). 

  41. W. Dong, Y. Wang, C. Huang, S. Xiang, P. Ma, Z. Ni, and M. Chen, Enhanced thermal stability of poly(vinyl alcohol) in presence of melanin, J. Therm. Anal. Calorim., 115(2), 1661-1668 (2014). 

  42. M. Xiao, Y. Li, M. C. Allen, D. D. Deheyn, X. Yue, J. Zhao, N. C. Gianneschi, M. D. Shawkey, and A. Dhinojwala, Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles, ACS Nano, 9(5), 5454-5460 (2015). 

  43. T.-F. Wu and J.-D. Hong, Dopamine-melanin nanofilms for biomimetic structural coloration, Biomacromolecules, 16(2), 660-666 (2015). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로