$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

목질계 바이오매스 전처리 공정에서 발생하는 리그닌 부산물 활용 기술 개발 동향
Value-added Utilization of Lignin Residue from Pretreatment Process of Lignocellulosic Biomass 원문보기

공업화학 = Applied chemistry for engineering, v.27 no.2, 2016년, pp.135 - 144  

정재영 (경희대학교 공과대학 화학공학과) ,  이유미 (경희대학교 공과대학 화학공학과) ,  이은열 (경희대학교 공과대학 화학공학과)

초록
AI-Helper 아이콘AI-Helper

불안정한 원유 가격과 지속적인 환경 문제를 야기하고 있는 석유 자원의 대체를 위한 바이오매스 활용 기술 개발과 상업화가 활발히 진행되고 있다. 목질계 바이오매스 전처리와 펄프 제조 과정에서 다량으로 발생하는 리그닌바이오에탄올 제조량의 증가와 더불어 발생량 또한 급속히 증가할 것으로 예상되고 있다. 리그닌은 방향족 고분자로 hydroxyl기와 같은 화학 작용기를 갖고 있어 화학 소재 원료로서의 활용이 가능한 저가 부산물이다. 리그닌의 방향족구조와 작용기를 oxypropylation, epxoidation 등을 이용하여 화학적으로 변환시켜 반응성을 향상시키거나, 새로운 화학작용기를 도입함으로써 바이오폴리우레탄, 바이오폴리에스터, 페놀 수지, 에폭시 수지바이오플라스틱 제조에 활용이 가능하다. 본 총설은 리그닌을 활용하여 제조 가능한 바이오플라스틱, 수지, 탄소섬유 등에 대해 소개하고, 관련 최신 연구 동향 및 리그닌 응용 기술에 관한 전망을 소개하였다.

Abstract AI-Helper 아이콘AI-Helper

Due to the high price volatility and environmental concern of petroleum, biofuels such as bioethanol produced from lignocellulosic biomass have attracted much attention. It is also expected that the amount of lignin residue generated from pretreatment of lignocellulosic biomass will increase as the ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이에 따라 바이오플라스틱 및 탄소섬유의 원료로 활용될 수 있는 리그닌의 수요가 증가할 것으로 전망되며, 리그닌을 이용한 바이오플라스틱과 수지에 대한 기술 개발도 활발히 진행되고 있다. 본 총설은 저가 부산물인 리그닌을 원료로 제조할 수 있는 바이오플라스틱, 수지, 탄소섬유 등에 관련한 최근 기술 개발 동향을 분석하고 응용 분야를 전망하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
바이오폴리우레탄에 관한 연구는 폴리우레탄의 어떠한 문제를 해결하기 위함인가? 수산기로는 부탄다이올(butanediol), 폴리에틸렌글 라이콜(polyethylene glycol)과 같은 폴리올(polyol)이 주로 사용되며, 이소시아네이트기로는 메틸렌 다이이소시아네이트(methylene diisocyanate, MDI), 톨루엔 다이소시아네이트(toluene diisocyanate, TDI)가주로 사용된다. 하지만 폴리우레탄의 경우 대부분 석유 자원 유래 원료를 사용하고 있어 석유 자원에 대한 의존도가 높으며, 유가 변동에 영향을 받는다는 문제점이 있다[18]. 이를 해결하고자 바이오매스를 원료로 사용하여 바이오폴리우레탄(biopolyurethane)을 합성하는 연구가 활발히 진행되고 있다[22-24].
리그닌은 무엇인가? 리그닌은 방향족 구조를 갖는 무정형의 물질로 목질계 바이오매스 에서 약 25~35%를 차지하고, 셀룰로오스 다음으로 가장 풍부한 자연계 고분자 물질이다[7,8]. 리그닌은 페놀릭 하이드록실 작용기와 메톡시 작용기가 결합되어 있는 페닐프로판(C 6-C 3) 구조의 단량체로 이루어져 있으며, 대표적으로 3종류의 페닐 프로판 모노머가 가교 결합되어 있는 분자 구조를 갖는다[9].
리그닌은 어떤 구조를 하고 있는가? 리그닌은 방향족 구조를 갖는 무정형의 물질로 목질계 바이오매스 에서 약 25~35%를 차지하고, 셀룰로오스 다음으로 가장 풍부한 자연계 고분자 물질이다[7,8]. 리그닌은 페놀릭 하이드록실 작용기와 메톡시 작용기가 결합되어 있는 페닐프로판(C 6-C 3) 구조의 단량체로 이루어져 있으며, 대표적으로 3종류의 페닐 프로판 모노머가 가교 결합되어 있는 분자 구조를 갖는다[9]. 3종류의 페닐 프로판 모노머는 para-coumaryl alcohol, coniferyl alcohol, synapyl alcohol이며, p-hydroxyphenyl (H), guaiacyl (G), syringyl (S)과 같은 모노리그놀의 전구체이다[10].
질의응답 정보가 도움이 되었나요?

참고문헌 (87)

  1. H. J. Eom, Y. K. Hong, S. H. Chung, Y. M. Park, and K. Y. Lee, Depolymerization of Kraft Lignin at Water-Phenol Mixture Solvent in Near Critical Region, J. Energy Eng., 20, 36-43 (2011). 

  2. J. A. Melero, J. Iglesias, and A. Garcia, Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges, Energy Environ. Sci., 5, 7393-7420 (2012). 

  3. J. Y. Zhu and X. J. Pan, Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation, Bioresour. Technol., 101, 4992-5002 (2010). 

  4. M. Ballesteros, J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros, Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromycesmarxianus CECT 10875, Process Biochem., 39, 1843-1848 (2004). 

  5. Z. P. Lei, Z. Q. Hu, H. F. Shui, S. B. Ren, Z. C. Wang, S. G. Kang, and C. X. Pan, Pyrolysis of lignin following ionic liquid pretreatment at low temperature, Fuel Process. Technol., 138, 612-615 (2015). 

  6. S. Kubo and J. F. Kadla, Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties, J. Polym. Environ., 13, 97-105 (2005). 

  7. M. Kleinert and T. Barth, Phenols from lignin, Chem. Eng. Technol., 31, 736-745 (2008). 

  8. X. Luo, A. Mohanty, and M. Misra, Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane, Ind. Crop. Prod., 47, 13-19 (2013). 

  9. S. Sen, S. Patil, and D. S. Argyropoulos, Thermal properties of lignin in copolymers, blends, and composites: a review, Green Chem., 17, 4862-4887 (2015). 

  10. E. Dorrestijn, L. J. Laarhoven, I. W. Arends, and P. Mulder, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal, J. Anal. Appl. Pyrolysis, 54, 153-192 (2000). 

  11. A. K. Sangha, J. M. Parks, R. F. Standaert, A. Ziebell, M. Davis, and J. C. Smith, Radical coupling reactions in lignin synthesis: a density functional theory study, J. Phys. Chem. B, 116, 4760-4768 (2012). 

  12. F. S. Chakar and A. J. Ragauskas, Review of current and future softwood kraft lignin process chemistry, Ind. Crop. Prod., 20, 131-141 (2004). 

  13. P. Azadi, O. R. Inderwildi, R. Farnood, and D. A. King, Liquid fuels, hydrogen and chemicals from lignin: a critical review, Renew. Sust. Energ. Rev., 21, 506-523 (2013). 

  14. S. Laurichesse and L. Averous, Chemical modification of lignins: towards biobased polymers, Prog. Polym. Sci., 39, 1266-1290 (2014). 

  15. A. Lee and Y. Deng, Green polyurethane from lignin and soybean oil through non-isocyanate reactions Eur. Polym. J., 63, 67-73 (2015). 

  16. Y. Park, W. O. Doherty, and P. J. Halley, Developing lignin-based resin coatings and composites, Ind. Crop. Prod., 27, 163-167 (2008). 

  17. B. Zhao, G. Chen, Y. Liu, K. Hu, and R. Wu, Synthesis of lignin base epoxy resin and its characterization, J. Mater. Sci. Lett., 20, 859-862 (2001). 

  18. Y. J. Jo, S. H. Choi, and E. Y. Lee, Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass, Appl. Chem. Eng., 24, 579-586 (2013). 

  19. H. Hatakeyema, N. Tanamachi, H. Matsumura, S. Hirose, and T. Hatakeyama, Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry, Thermochim. Acta, 431, 155-160 (2005). 

  20. R. Auvergne, S. Caillol, G. David, B. Boutevin, and J. P. Pascault, Biobased thermosetting epoxy: present and future, Chem. Rev., 114, 1082-1115 (2013). 

  21. L. Pilato, Phenolic resins: 100Years and still going strong, React. Funct. Polym., 73, 270-277 (2013). 

  22. K. H. Kim, Y. J. Jo, C. G. Lee, and E. Y. Lee, Solvothermal liquefaction of microalgalTetraselmis sp. biomass to prepare biopolyols by using PEG# 400-blended glycerol, Algal Res., 12, 539-544 (2015). 

  23. K. Nakamura, T. Hatakeyama, and H. Hatakeyama, Thermal properties of solvolysis lignin-derived polyurethanes, Polym. Adv. Technol., 3, 151-155 (1992). 

  24. S. Hu, C. Wan, and Y. Li, Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw, Bioresour. Technol., 103, 227-233 (2012). 

  25. Y. Li and A. J. Ragauskas, Kraft lignin-based rigid polyurethane foam, J. Wood Chem. Technol., 32, 210-224 (2012). 

  26. N. Mahmood, Z. Yuan, J. Schmidt, and C. C. Xu, Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters, Bioresour. Technol., 139, 13-20 (2013). 

  27. S. Hu, X. Luo, and Y. Li, Polyols and polyurethanes from the liquefaction of lignocellulosic biomass, Chem. Sus. Chem., 7, 66-72 (2014). 

  28. E. B. da Silva, M. Zabkova, J. D. Araujo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues, An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin, Chem. Eng. Res. Des., 87, 1276-1292 (2009). 

  29. Y. Jin, X. Ruan, X. Cheng, and Q. Lu, Liquefaction of lignin by polyethyleneglycol and glycerol, Bioresour. Technol., 102, 3581-3583 (2011). 

  30. H. Q. Li, Q. Shao, H. Luo, and J. Xu, Polyurethane foams from alkaline lignin-based polyether polyol, J. Appl. Polym. Sci., Doi:10.1002/app.43261. 

  31. J. H. Lee, J. H. Lee, D. K. Kim, C. H. Park, J. H. Yu, and E. Y. Lee, Crude glycerol-mediated liquefaction of empty fruit bunches saccharification residues for preparation of biopolyurethane, J. Ind. Eng. Chem., 34, 157-164 (2016). 

  32. J. C. Dominguez, M. Oliet, M. V. Alonso, E. Rojo, and F. Rodriguez, Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin, Ind. Crop. Prod., 42, 308-314 (2013). 

  33. J. M. Perez, M. Oliet, M. V. Alonso, and F. Rodriguez, Cure kinetics of lignin-novolac resins studied by isoconversional methods, Thermochim. Acta, 487, 39-42 (2009). 

  34. S. Cheng, Z. Yuan, M. Leitch, M. Anderson, and C. C. Xu, Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio, Ind. Crop. Prod., 44, 315-322 (2013). 

  35. N. S. Cetin and N. Ozmen, Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: I. Organosolv lignin modified resins, Int. J. Adhes. Adhes., 22, 477-480 (2002). 

  36. M. V. Alonso, M. Oliet, J. M. Perez, F. Rodriguez, and J. Echeverria, Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods, Thermochim. Acta, 419, 161-167 (2004). 

  37. C. C. Lin and H. Teng, Influence of the formaldehyde-to-phenol ratio in resin synthesis on the production of activated carbons from phenol-formaldehyde resins, Ind. Eng. Chem. Res., 41, 1986-1992 (2002). 

  38. P. K. Pal, A. Kumar, and S. K. Gupta, Modelling of resole type phenol formaldehyde polymerization, Polymer, 22, 1699-1704 (1981). 

  39. W. J. Lee, K. C. Chang, and I. M. Tseng, Properties of phenol formaldehyde resins prepared from phenol-liquefied lignin, J. Appl. Polym. Sci., 124, 4782-4788 (2012). 

  40. W. Zhang, Y. Ma, Y. Xu, C. Wang, and F. Chu, Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive, Int. J. Adhes. Adhes., 40, 11-18 (2013). 

  41. W. J. Lee and Y. C. Chen, Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings, Bioresour. Technol., 99, 7247-7254 (2008). 

  42. J. M. Raquez, M. Deleglise, M. F. Lacrampe, and P. Krawczak, Thermosetting (bio) materials derived from renewable resources: a critical review, Prog. Polym. Sci., 35, 487-509 (2010). 

  43. B. J. Anderson, Thermal stability of high temperature epoxy adhesives by thermogravimetric and adhesive strength measurements, Polym. Degrad. Stabil., 96, 1874-1881 (2011). 

  44. M. R. Bagherzadeh, A. Daneshvar, and H. Shariatpanahi, Novel water-based nanosiloxane epoxy coating for corrosion protection of carbon steel, Surf. Coat. Technol., 206, 2057-2063 (2012). 

  45. T. I. Yang, C. W. Peng, Y. L. Lin, C. J. Weng, G. Edgington, A. Mylonakis, T. C. Huang, C. H. Hsu, J. M. Yeh, and Y. Wei, Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multiscale structures mimicking the surface of Xanthosomasagittifolium leaf, J. Mater. Chem., 22, 15845-15852 (2012). 

  46. K. Li, K. Wang, M. S. Zhan, and W. Xu, The change of thermal-mechanical properties and chemical structure of ambient cured DGEBA/TEPA under accelerated thermo-oxidative aging, Polym. Degrad. Stabil., 98, 2340-2346 (2013). 

  47. R. F. Fischer, Polyesters from epoxides and anhydrides, J. Polym. Sci., 44, 155-172 (1960). 

  48. L. H. Sinh, N. N. Trung, B. T. Son, S. Shin, D. T. Thanh, and J. Y. Bae, Curing behavior, thermal, and mechanical properties of epoxy resins cured with a novel liquid crystalline dicarboxylic acid curing agent, Polym. Eng. Sci., 54, 695-703 (2014). 

  49. E. C. Dodds and W. Lawson, Synthetic estrogenic agents without the phenanthrene nucleus, Nature, 137, 996-996 (1936). 

  50. K. L. Howdeshell, A. K. Hotchkiss, K. A. Thayer, J. G. Vandenbergh, and F. S. VomSaal, Environmental toxins: exposure to bisphenolA advances puberty, Nature, 401, 763-764 (1999). 

  51. A. Campanella, M. A. Baltanas, M. C. Capel-Sanchez, J. M. Campos-Martin, and J. L. G. Fierro, Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO 2 catalyst, Green Chem., 6, 330-334 (2004). 

  52. T. Koike, Progress in development of epoxy resin systems based on wood biomass in Japan, Polym. Eng. Sci., 52, 701-717 (2012). 

  53. N. E. El Mansouri, Q. Yuan, and F. Huang, Synthesis and characterization of kraft lignin-based epoxy resins, Bioresources, 6, 2492-2503 (2011). 

  54. T. Malutan, R. Nicu, and V. I. Popa, Lignin modification by epoxidation, Bioresources, 3, 1371-1376 (2008). 

  55. P. Y. Kuo, M. Sain, and N. Yan, Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark, Green Chem., 16, 3483-3493 (2014). 

  56. H. Pan, G. Sun, and T. Zhao, Synthesis and characterization of aminated lignin, Int. J. Biol. Macromol., 59, 221-226 (2013). 

  57. C. Sasaki, M. Wanaka, H. Takagi, S. Tamura, C. Asada, and Y. Nakamura, Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin, Ind. Crop. Prod., 43, 757-761 (2013). 

  58. F. Ferdosian, Z. Yuan, M. Anderson, and C. C. Xu, Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology, RSC Adv., 4, 31745-31753 (2014). 

  59. F. Ferdosian, Z. Yuan, M. Anderson, and C. C. Xu, Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: Curing kinetics and thermal properties, Thermochim. Acta, 618, 48-55 (2015). 

  60. J. Qin, M. Woloctt, and J. Zhang, Use of polycarboxylic acid derived from partially depolymerized lignin as a curing agent for epoxy application, ACS Sustain. Chem. Eng., 2, 188-193 (2013). 

  61. T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Messman, F. S. Baker, M. Keller, and A. K. Naskar, Turning renewable resources into value-added polymer: development of lignin-based thermoplastic, Green Chem., 14, 3295-3303 (2012). 

  62. A. L. Korich, K. M. Clarke, D. Wallace, and P. M. Iovine, Chemical modification of a lignin model polymer via arylboronate ester formation under mild reaction conditions, Macromolecules, 42, 5906-5908 (2009). 

  63. J. H. Lora and W. G. Glasser, Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials, J. Polym. Environ., 10, 39-48 (2002). 

  64. M. Evtiouguina, A. Barros-Timmons, J. J. Cruz-Pinto, C. P. Neto, M. N. Belgacem, and A. Gandini, Oxypropylation of cork and the use of the ensuing polyols in polyurethane formulations, Biomacromolecules, 3, 57-62 (2002). 

  65. B. Ahvazi, O. Wojciechowicz, T. M. Ton-That, and J. Hawari, Preparation of lignopolyols from wheat straw soda lignin, J. Agric. Food Chem., 59, 10505-10516 (2011). 

  66. C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, and M. N. Belgacem, Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams, Ind. Eng. Chem. Res., 48, 2583-2589 (2009). 

  67. H. Nadji, C. Bruzzese, M. N. Belgacem, A. Benaboura, and A. Gandini, Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols, Macromol. Mater. Eng., 290, 1009-1016 (2005). 

  68. H. Sadeghifar, C. Cui, and D. S. Argyropoulos, Toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraftlignins via methylation and oxypropylation chemistries, Ind. Eng. Chem. Res., 51, 16713-16720 (2012). 

  69. M. Yoshioka, Y. Nishio, D. Saito, H. Ohashi, M. Hashimoto, and N. Shiraishi, Synthesis of biopolyols by mild oxypropylation of liquefied starch and its application to polyurethane rigid foams, J. Appl. Polym. Sci., 130, 622-630 (2013). 

  70. M. V. Alonso, M. Oliet, F. Rodriguez, J. Garcia, M. A. Gilarranz, and J. J. Rodriguez, Modification of ammonium lignosulfonate by phenolation for use in phenolic resins, Bioresour. Technol., 96, 1013-1018 (2005). 

  71. L. Hu, H. Pan, Y. Zhou, and M. Zhang, Methods to improve lignin's reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review, BioResources, 6, 3515-3525 (2011). 

  72. J. Podschun, B. Saake, and R. Lehnen, Reactivity enhancement of organosolv lignin by phenolation for improved bio-based thermosets, Eur. Polym. J., 67, 1-11 (2015). 

  73. R. Fang, X. Cheng, and W. S. Lin, Preparation and application of dimer acid/lignin graft copolymer, BioResources, 6, 2874-2884 (2011). 

  74. J. Qiao, M. Guo, L. Wang, D. Liu, X. Zhang, L. Yu, W. Song and Y. Liu, Recent advances in polyolefin technology, Polym. Chem., 2, 1611-1623 (2011). 

  75. H. Chung and N. R. Washburn, Chemistry of lignin-based materials, Green Mat., 1, 137-160 (2012). 

  76. M. Mikulasova, B. Kosikova, P. Alexy, F. Kacik, and E. Urgelova, Effect of blending lignin biopolymer on the biodegradability of polyolefin plastics, World J. Microbiol. Biotechnol., 17, 601-607 (2001). 

  77. G. Cazacu, M. C. Pascu, L. Profire, A. I. Kowarski, M. Mihaes, and C. Vasile, Lignin role in a complex polyolefin blend, Ind. Crop. Prod., 20, 261-273 (2004). 

  78. M. Nahmany and A. Melman, Chemoselectivity in reactions of esterification, Org. Biomol. Chem., 2, 1563-1572 (2004). 

  79. G. Sivasankarapillai, A. G. McDonald, and H. Li, Lignin valorization by forming toughened lignin-co-polymers: Development of hyperbranchedprepolymers for cross-linking, Biomass Bioenerg., 47, 99-108 (2012). 

  80. T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Messman, F. S. Baker, M. Keller, and A. K. Naskar, Turning renewable resources into value-added polymer: development of lignin-based thermoplastic, Green Chem., 14, 3295-3303 (2012). 

  81. Z. X. Guo and A. Gandini, Polyesters from lignin-2. The copolyesterification of kraft lignin and polyethylene glycols with dicarboxylic acid chlorides, Eur. Polym. J., 27, 1177-1180 (1991). 

  82. N. T. ThanhBinh, N. D. Luong, D. O. Kim, S. H. Lee, B. J. Kim, Y. S. Lee, and J. D. Nam, Synthesis of lignin-based thermoplastic copolyester using kraft lignin as a macromonomer, Compos. Interfaces, 16, 923-935 (2009). 

  83. E. Frank, L. M. Steudle, D. Ingildeev, J. M. Sporl, and M. R. Buchmeiser, Carbon fibers: precursor systems, processing, structure, and properties, Angew. Chem. Int. Ed., 53, 5262-5298 (2014). 

  84. I. Norberg, Y. Nordstrom, R. Drougge, G. Gellerstedt, and E. Sjoholm, A new method for stabilizing softwood kraft lignin fibers for carbon fiber production, J. Appl. Polym. Sci., 128, 3824-3830 (2013). 

  85. J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, Lignin-based carbon fibers for composite fiber applications, Carbon, 40, 2913-2920 (2002). 

  86. D. A. Baker and T. G. Rials, Recent advances in low-cost carbon fiber manufacture from lignin, J. Appl. Polym. Sci., 130, 713-728 (2013). 

  87. G. Gellerstedt, E. Sjoholm, and I. Brodin, The wood-based biorefinery: A source of carbon fiber?, Open Agric. J., 4, 119-124 (2010). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로