$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

이산화탄소 포집기술 국외 기술개발 동향
Global Trend of CO2 Capture Technology Development 원문보기

KEPCO Journal on electric power and energy, v.2 no.2, 2016년, pp.143 - 165  

백점인 (한국전력공사 전력연구원)

초록
AI-Helper 아이콘AI-Helper

COP21에서 채택된 파리협정에서 명시한 지구 대기온도 $2^{\circ}C$ 이하 상승억제 목표를 달성하기 위해서는 현재 각 당사국이 제출한 감축 목표치로만은 부족한 상황이다. 이에 따라 향후 감축목표를 상향하기 위한 작업이 이루어질 것이다. $CO_2$ 배출량을 줄이기 위한 여러 수단 중 이산화탄소 포집 및 저장(CCS: Carbon Capture and Storage)은 필수 옵션으로 현재 전세계에서 대규모 실증이 진행되고 있다. 실증 단계에 있는 1세대 기술의 경우 높은 포집비용 및 발전원가 상승으로 정책적 뒷받침 없이는 시장보급이 어려운 실정이다. 이에 비용을 저감하기 위한 2세대, 3세대 혁신 포집기술들이 개발되고 있으며 2세대 기술들은 파일럿 규모로, 3세대 기술들은 벤치규모로 연구되고 있다. 본 리뷰 논문에서는 전세계 대규모 CCS 실증 사업 현황을 살펴보고, 2세대, 3세대 포집기술에 대해 연소전, 연소후, 신연소기술로 구분하고 습식 포집기술, 건식 포집기술, 분리막 기술, 산소연소기술의 세부 기술개발 내용에 대한 현재까지의 기술개발 결과를 요약정리하였다.

Abstract AI-Helper 아이콘AI-Helper

The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-i...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
이산화탄소 포집 및 저장이 필요한 이유는? 주요 감축 수단과 감축 기여율은 재생에너지(30%), 이산화탄소 포집 및 저장(13%), 발전효율 향상 및 연료교체(1%), 최종 사용연료 교체(10%), 최종 사용 연료 및 전기 이용효율 향상(38%), 원자력(8%) 이다 [3]. 이산화탄소 배출 감축 수단에 있어 저비용 감축 기술만을 이용하여 필요한 에너지 수요를 모두 충당하지 못하기 때문에 이산화탄소 포집 및 저장(CCS: Carbon Capture and Storage) 은 필수 옵션이다. CCS없이 감축목표를 달성하기 위해서는더 많은 비용이 투입되는 기술들을 도입하여야 하며 감축목표 달성을 위한 투입비용이 평균 약 138% 증가하는 것으로 분석되었다 [2].
유엔기후변화협약에서 195개국 대표들은 어떤 합의를 하였는가? 2015년 12월 파리에서 개최된 제21차 유엔기후변화협약 (UNFCCC: United Nations Framework Convention on Climate Change) 당사국총회 (COP21: 21 st Conference of the Parties)에 참가한 195개국 대표들은 지구평균기온 상승을 산업화 이전 대비 2 ℃보다 낮은 수준으로 유지하고, 1.5 ℃ 상승으로 제한하기 위해 노력하기로 합의하였다. 1997년 채택된 교토의정서를 대신하여 2020년부터 적용될 신기후체제인 파리 기후변화협정(Paris Climate Change Agreement)은 최소 55개 국가가, 그리고 전세계 배출량의 55%이상이 비준되면 발효 된다.
이산화탄소 포집 및 저장기술 발전에 있어 포집기술 개발 및 비용저감이 중요한 이유는? CCS 기술의 구성은 포집, 수송, 저장으로 구분되며 전체 소요비용 중 포집이 70% 이상을 차지하므로 [5][6] 포집비용을 줄이는 것이 CCS기술의 보급 및 활용을 위한 핵심이라고할 수 있다. 이에 따라 세계 각 국은 대용량 포집 및 저장 실증과 함께 차세대 저비용 포집기술 개발을 위해 경쟁하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (103)

  1. 이은희, 2015. 제21차 당사국총회 파리협정 결과 및 CCS, Issue Report vol. 14, Korea Carbon Capture & Sequestration Center. 

  2. IPCC, 2014. Climate change 2014: synthesis report. Summary for policy makers, International Panel on Climate Change. 

  3. IEA, 2015. Energy technology perspectives 2015, Paris: OECD/IEA. 

  4. Global CCS Institute, 2012. Global status of CCS report 2012. 

  5. Rubin, E.S. et al., 2015. The cost of $CO_2$ capture and Storage. International Journal of Greenhouse Gas Control, vol. 40, pp. 378-400. 

  6. Miller D.C. et al., 2016. Toward Transformational Carbon Capture Systems, AIChE Journal, vol. 62, pp. 2-10. 

  7. IEA, 2015. World Energy outlook 2015, Paris: OECD/IEA. 

  8. Global CCS Institute, 2014 Global status of CCS report 2014. 

  9. Global CCS Institute, 2015 Global status of CCS report 2015. 

  10. CSLF, 2015. Supporting Development of 2nd and 3rd Generation Carbon Capture Technologies, Carbon Sequestration Leadership Forum. 

  11. IEA, 2011. Cost and performance of carbon dioxide capture from power generation, Paris: OECD/IEA. 

  12. US DOE, 2015a. Cost and performance baseline for fossil energy plants volume 1a: bituminous coal (PC) and natural gas to electricity revision 3, Pittsburgh: US DOE/NETL. 

  13. US DOE, 2015b. Cost and performance baseline for fossil energy plants volume 1b: bituminous coal (IGCC) to electricity revision 2b-year dollar update, Pittsburgh: US DOE/NETL. 

  14. Heckel, L., 2014. Quest Carbon Capture and Storage Project, Global CCS Institute Educational Outreach Workshop. 

  15. Al Buraik K., Uthmaniyah $CO_2$ -EOR demonstration project, Saudi Aramco. Available at: http://www.cslforum.org/publications/documents/riyadh2015/AlBuraik-UthmaniyahCO2EORProject-Ministerial-Riyadh1115.pdf 

  16. Preston, C.K., 2015. Integrated Carbon Capture and Storage Project at Saskpower's Boundary Dam Power Station, IEAGHG. 

  17. McDonald, S., 2012. Illinois Industrial Carbon Capture and Storage Project, Archer Daniels Midland Company, 2012 NETL $CO_2$ Capture Technology Meeting. 

  18. Esposito, R.A., 2015. Kemper County Energy Facility, Southern Company, 2015 CSLF technology Workshop: Lessons Learned from Large-Scale CCS. 

  19. Sarkus, T.A., 2015. Update on the Kemper IGCC with Pre-Combustion, and Petra Nova Post-Combustion Capture Projects, DOE/NETL. 

  20. Jenkins, J., 2015. Financing Mega-Scale Energy Projects: A Case Study of the Petra Nova Carbon Capture Project, Paulson Institute and CCIEE. 

  21. ACTL, 2015. Knowledge Sharing report-Division A: Summary Report, North West Redwater Partnership and Enhance Energy Inc. 

  22. Chevron. Carbon Dioxide Injection Project,Gorgon Project Fact Sheet. 

  23. ESI CCS Project and Rumaitha/Bab $CO_2$ Projects. Abu Dhabi Carbon Capture, Usage and Storage Project, Masdar: A Mubadala Company and ADNOC. 

  24. Masdar: A Mubadala Company and Al Reyadah. CCUS Projects, Abu Dhabi. 

  25. DOE/NETL. Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion $CO_2$ Capture and Sequestration. Project Facts. 

  26. Royal Dutch Shell, 2014. The Peterhead Carbon Capture and Storage Project. 

  27. Read, A. et al., 2014. Update on the ROAD Project and Lessons Learnt, Energy Procedia, vol. 63, pp. 6079-6095. 

  28. GCCSI, 2015. CCS: A China Perspective Yanchang Petroleum Report 1: Capturing $CO_2$ from Coal to Chemical Process. 

  29. Chui, E., 2015. Overview of Carbon Capture and Storage (CCS) Activities in Canada. Canmet ENERGY, CSLF Technical Group Meeting. 

  30. Monea, M., 2014. Saskpower CCS. SaskPower, GHGT-12. 

  31. Der, V., 2016. Challenges, Opportunities and Strategy for CCS in the US, CCS Conference Tokyo, Japan. 

  32. McDonald, S., 2015. ADM CCS Projects: Experience and Lessons Learned, Archer Daniels Midland Company, CSLF Technical Workshop. 

  33. IEA, 2015. Carbon Capture and Storage: The solution for deep emissions reductions. 

  34. US DOE, 2013b. Carbon capture technology program plan, Pittsburgh: US DOE/NETL. 

  35. Plasynski, S., 2015. Fueling the future: safe, affordable, secure energy. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  36. Ciferno, J., 2011. The US Department of Energy's Carbon Capture RD&D Program. Pittsburgh, PA, Proceedings of the 2011 NETL $CO_2$ Capture Technology Meeting, 22-26 August 2011. 

  37. Baburao, B. et al., 2014. Advanced amine process technology operations and results from demonstration facility at EDF Le Havre. Energy Procedia, vol. 63, pp. 6173-6187. 

  38. US DOE, 2015. Quadrennial Technology Review 2015-Chapter 4: Advancing Clean Electric Power technologies-Technology Assessment. 

  39. Zhang, J. et al., 2013. $CO_2$ -Binding-Organic-Liquids-Enhanced $CO_2$ Capture using Polarity-Swing-Assisted Regeneration, Energy Procedia, vol. 37, pp. 285-291. 

  40. Wei, S.C.-C., 2013. Amino acid salts for $CO_2$ capture at flue gas temperatures, Energy Procedia, vol. 37, pp. 485-493. 

  41. Smith, K. et al., 2016. Pilot plant results from a precipitaing potassium carbonate solvent absorption process for $CO_2$ capture, 5th International Symposium on Energy Challenges & Mechanics, 10-14 July 2016. 

  42. Wang, X. et al. Phase-Change Solvents for $CO_2$ Capture, Available at: http://medicine.hsc.wvu.edu/media/20046/booch_15.pdf. 

  43. Fradette, L., 2015. Pilot testing of enzyme-accelerated $CO_2$ capture. Pittsburgh, The 14th Annual CCUS Conference, 28 April-1 May 2015. 

  44. Carley, J.A., 2015. Results of Pilot Testing of Enzyme Accelerated $CO_2$ Capture Process, $CO_2$ Solutions, 3rd Post Combustion Capture Conference, 8 September 2015. 

  45. Zaks, A., 2015. Low energy $CO_2$ capture enabled by biocatalyst delivery system. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  46. DOE-NETL, 2015. Novel Flow Sheet For Low Energy $CO_2$ Capture Enabled by Biocatalyst Delivery System, Project Continuation Application, 15 July 2015. 

  47. Brown, A., 2015. ION novel solvent system for $CO_2$ capture. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  48. Brown, A., 2015. ION Novel Solvent System for $CO_2$ Capture, ION Engineering, 2015 NETL $CO_2$ Capture Technology Meeting. 

  49. Krishnamurthy, K. R., 2015. Slipstream pilot plant demonstration of an amine based post-combustion capture technology for $CO_2$ capture from coal-fired power plant flue gas. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  50. Rigby, S.T., 2015. Results from the Testing on a 1 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville, BASF Corporation, PCCC3 and Saskpower Symposium, 8-11 September 2015. 

  51. Nikolic, H. et al., 2015. Application of a Heat Integrated Post-combustion $CO_2$ Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant, University of Kentucky-Center for Applied Energy Research, PCCC3 and Saskpower Symposium, 8-11 September 2015. 

  52. Thompson, J. et al., 2015. Application of a Heat Integrated Post-combustion $CO_2$ Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant, University of Kentucky-Center for Applied Energy Research, Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  53. Thomas, J., 2015. Waste heat integration with solvent process for more efficient $CO_2$ removal from coal-fired flue gas: 2015 update. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  54. Kamijo, T., 2015. Current Status of MHI $CO_2$ Capture Plant Technology & Commercial Experiences, Mitsubishi Heavy Industries, Ltd., 8 December 2015. 

  55. Kamijo, T., 2015. Current Status of MHI $CO_2$ Capture Plant Technology & Commercial Experiences, Mitsubishi Heavy Industries, Ltd., 9 September 2015. 

  56. Wang, J. et al., 2014. $CO_2$ capture RD&D proceedings in China Huaneng Group, Int J Coal Sci Technol, vol. 1, pp. 129-134. 

  57. Rochelle, G., 2015. Pilot plant testing of piperazine with High T regeneration. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  58. Rochelle, G.T. et al., Pilot Plant Testing of Piperazine (PZ) with High T Regeneration, GHGT-12, 5-9 October 2014. 

  59. Carbon and Environment Daily, 2014. AGL and CSIRO explore low-energy $CO_2$ capture, Available at: http://www. bcinnovation.com.au/ Assets/732/1/AGLandCSIROexplorelowenergy $CO_2$ captue.pdf 

  60. Wood, B., 2015. Pilot-scale silicone process for low-cost $CO_2$ capture. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  61. Brown Coal Innovation Austrailia, 2016. Perspectives on Brown Coal, Issue 16, March 2016. 

  62. Sjostrom, S., 2015. Optimizing the costs of solid sorbent- based $CO_2$ capture processes through heat integration. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  63. Sjostrom, S. et al., 2014. Evaluation of Solid Sorbents as a Retrofit Technology for $CO_2$ Capture, ADA-ES, Inc., 29 July 2014. 

  64. Elliott, J., 2015. Sorbent-based post-combustion $CO_2$ slipstream testing. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  65. Elliott, J., 2014. Sorbent-based post-combustion $CO_2$ slipstream testing. Pittsburgh, Proceedings of the 2014 NETL $CO_2$ Capture Technology Meeting, 29 July 2014. 

  66. Farmer, J. et al., 205. Advanced Solid Sorbents and Process Designs for Post-Combustion $CO_2$ Capture, 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  67. Hornbostel, M., 2015. Pilot-scale evaluation of an advanced carbon sorbent-based process for postcombustion carbon capture. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  68. Sanchez-Biezma, A. et al., 2011. Postcombustion $CO_2$ capture with CaO. Status of the technology and next steps towards large scale demonstration, Energy Procedia, vol. 4, pp. 852-859. 

  69. Sanchez-Biezma, A. et al., 2013. Testing postcombustion $CO_2$ Capture with CaO in a 1.7 MWth pilot facility, Energy Procedia, vol. 37, pp. 1-8. 

  70. Abanades, C., 2013. Post combustion $CO_2$ capture by Calcium Looping, Spanish Research Council (CSIC-INCAR), 2013 Korea CCS conference, 13-15 March 2013. 

  71. Merkel, T., 2015. Pilot testing of a membrane system for post-combustion $CO_2$ capture. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  72. Zhou, S.J., 2015. Pilot test of a nanoporous, super-hydrophobic membrane contactor process for post-combustion $CO_2$ capture. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  73. Zhou, S.J. et al., 2015. Pilot Test of a Nanoporous, Superhydrophobic Membrane Contactor Process for Post-combustion $CO_2$ capture. 2015 Project review at NETL, 6 February 2015. 

  74. Chaubey, T., 2015. $CO_2$ capture by cold membrane operation. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  75. Jayaweera, I., 2012. $CO_2$ capture from IGCC gas streams using the AC-ABC process. Pittsburgh, Proceedings of the 2012 NETL $CO_2$ Capture Technology Meeting, 9-12 July 2012. 

  76. Krishnan, G., 2013. $CO_2$ capture from IGCC gas streams using the AC-ABC process. Pittsburgh, 2013 NETL $CO_2$ Capture Technology Meeting, 8-11 July 2013. 

  77. Nagar, A,, 2015. $CO_2$ capture from IGCC gas streams using the AC-ABC process. Pittsburgh, 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  78. Nakamoto, T. et al., 2014. Study on high-pressure $CO_2$ capture process, Energy Procedia, vol. 63, pp. 1940-1943. 

  79. Alptekin, G., 2015. Pilot testing of a highly efficient precombustion sorbent-based carbon capture system. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  80. Jansen, D. et al., 2013. SEWGS technology is now ready for scale-up, Energy Procedia, vol. 37, pp. 2265-2273. 

  81. Follett, W., 2015. Advanced oxy-combustion technology development and scale-up for new and existing coal-fired power plants. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  82. Marrs, R., 2013. Pressurized Oxy-Combustion: An Advancement in in Thermal and Operating Efficiency for Clean Coal Power Plants, Unity Power Alliance, Available at: http://www.mcilvainecompany.com/Universal_Power/Subscriber/PowerDescriptionLinks. 

  83. Net Power, 2015. NET POWER. Available at: https://netpower.com. 

  84. Strohle, J. et al., 2015. Chemical Looping Combustion of Coal and Biomass in a 1 MWth Pilot Plant Using Ilmenite and Iron Ore as Oxygen Carrier, 6th IEAGHG High Temperature Solid Looping Cycles Network Meeting, 1-2 September 2015. 

  85. Andrus, H. et al., 2014. Alstom's Chemical Looping Technology Program Update, The 50th Annual Minnesota Power Systems Conference, 4-6 November 2014. 

  86. Kluger, F. etal., 2015. Overview of Alstom's Chemical Looping Programs, 5th Meeting of the IEAGHG International Oxyfuel Combustion Research Network, 28 October 2015. 

  87. Chamberland, R., 2015. Alstom's chemical looping combustion technology with $CO_2$ capture for new and existing coal-fired power plants. Pittsburgh, Proceedings of the 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  88. Tong, A. et al., 2014. Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University. Applied Energy, Vol. 113, pp. 1836-1845. 

  89. B&W Power generation Group, Atmospheric Iron-Based Coal Direct Chemical Looping Process for Power Production, 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  90. Kelly, S.M., 2014. Praxair's Oxygen Transport Membranes for Oxycombustion and Syngas Applications, Praxair OTM Technology NT43088. 

  91. Li, J., 2015. Praxair's Oxygen Transport Membrane Technology for Syngas and Power Applications, 2015 NETL $CO_2$ Capture Technology Meeting, 23-26 June 2015. 

  92. Chou, Y.-C., 2013. Experiments on Calcium Looping Process and $1.9MW_t$ Pilot Plant Demonstration, Industrial Technology Research Institute, 6 August 2013. 

  93. Industrial Technology Research Institute, 2014. R & D Achievements on Carbon Capture and Storage in ITRI, Taiwan, Available at: http://ccs.tw/sites/default/files/datashare/pdf/2014-10-06-0923-gong_yan_yuan_ccsyan_fa_cheng_guo_ying_wen_.pdf. 

  94. Knudsen, J.N. et al., 2015. Amine technology - An attractive solution for CCS in the cement industry, CCS Workshop at DNV GL, 10 September 2015. 

  95. Knudsen, J.N., 2015. Results and Future Perspective of Aker Solutions' Amine project, Norcem $CO_2$ Capture Project, Langesund, 20 May 2015. 

  96. Nelson, T., 2015. Results and Future Perspective of RTI's Advanced Solid Sorbent Project, International CCS Conference, 20 May 2015. 

  97. Lesemann, M., 2015. RTI Carbon Capture Technology Development, Available at: http://www.energy.ca.gov/research/notices/2015-04-16_workshop/presentations/RTI_ $CO_2$ _capture_solutions_2015-04-16.pdf. 

  98. Bjerge, L., 2015. Norcem $CO_2$ Capture Project Status and Results, CLIMIT SUMMIT, 24 February 2015. 

  99. Bjerge, L., 2014. Norcem $CO_2$ Capture Project, Platts 8th Annual European CCS, 18-19 February 2014. 

  100. Armbrust, N. et al., 2014. Gasification of Biomass with In-Situ $CO_2$ Capture and Separation in a 200 kWth Pilot Plant, Gasification Technologies 2014, Washington D.C., 26-29 October 2014. 

  101. Shiau, J. S., 2015. The progress report of China Steel Corporation. Dusseldorf, Proceedings of the World Steel Association $CO_2$ Breakthrough Meeting, 18 June 2015. 

  102. Ono, T., 2015. COURSE 50 status report. Dusseldorf, Proceedings of the World Steel Association $CO_2$ Breakthrough Meeting, 18 June 2015. 

  103. STEPWISE, 2015. STEPWISE Project website, Available at http://www.stepwise.eu. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로