$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

본 연구는 노란콩 8품종(새단백, 대원, 대풍, 늘찬, 태광, 선유, 황금, 및 대망)에 대해 Lactobacillus plantarum P1201 균주를 이용하여 콩-분말 두유 발효 중 식물성 에스트로겐 및 항산화 활성 변화를 측정하였다. 그 결과, 발효가 진행되는 동안 isoflavone-glycoside는 감소하였고, total phenolic 및 isoflavoneaglycone 함량과 DPPH와 ABTS 라디칼 소거활성 및 FRAP 환원력은 증가하였다. 특히 대풍콩-분말 두유는 발효 60시간 후 daidzein, glycitein, 및 genistein 함량이 각각 177.92, 20.64, 및 $106.14{\mu}g/g$으로 다른 콩 품종들보다 가장 높은 것으로 나타났으며 또한 대풍콩-분말 두유는 발효 후 DPPH 라디칼 소거활성은 48.54%, ABTS 라디칼 소거활성은 99.25% 및 FRAP 환원력은 0.84로 가장 높게 나타났다. 따라서 대풍콩-분말 두유는 aglycone 함량이 높고 우수한 항산화 활성을 나타내므로 기능성 식품 개발에 이용될 수 있을 것으로 기대된다.

Abstract

This study evaluated the changes of phytoestrogen contents and antioxidant activities of soybean-powder milk (SPM) prepared from yellow soybean during fermentation with Lactobacillus plantarum P1201. In consequence, the levels of total phenolic and isoflavone-aglycone contents, ABTS and DPPH radical-scavenging activities, and FRAP assay values increased, while isoflavone-glycoside contents decreased during fermentation. The highest levels of daidzein, glycitein, and genistein were present in the Daepung SPM at concentrations of 177.92, 20.64, and $106.14{\mu}g/g$, respectively after 60 h of fermentation. Moreover, Daepung SPM showed the highest DPPH radical-scavenging activity of 48.54%, an ABTS radical-scavenging activity of 99.25%, and a FRAP assay value of 0.84 at the end of fermentation. The fermented Daepung SPM possessed highest isoflavone aglycone contents and antioxidant activities, which can be utilized for the development of functional foods.

참고문헌 (26)

  1. Chen, T.R., Su, R.Q., and Wei, Q.K. 2010. Hydrolysis of isoflavone phytoestrogen in soymilk fermented by Lactobacillus and Bifidobacterium cocultures. J. Food Biochem. 34, 1-12. 
  2. Cheng, C.P., Tsai, S.W., Chiu, C.P., Pan, T.M., and Tsai, T.Y. 2013. The effect of probiotic fermented soymilk on enhancing the NO-mediated vascular relaxation factors. J. Sci. Food Agric. 93, 1219-1225. 
  3. Chien, H.L., Huang, H.Y., and Chou, C.C. 2006. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23, 772-778. 
  4. Chun, J.Y., Jeong, W.J., Kim, J.S., Lim, J.K., Park, C.S., Kwon, D.Y., Choi, I.D., and Kim, J.H. 2008a. Hydrolysis of isoflavone glucosides in soymilk fermented with single or mixed cultures of Lactobacillus paraplantarum KM, Weissella sp. 33, and Enterococcus faecium 35 isolated from humans. J. Microbiol. Biotechnol. 18, 573-578. 
  5. Chun, J.Y., Kim, J.S., and Kim, J.H. 2008b. Enrichment of isoflavone in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem. 109, 278-284. 
  6. Chung, I.M., Seo, S.H., Ahn, J.K., and Kim, S.H. 2011. Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste. Food Chem. 127, 960-967. 
  7. Donkor, O.N. and Shah, N.P. 2008. Production of ${\beta}$-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis and Lactobacillus casei in soymilk. J. Food Sci. 73, 15-20. 
  8. Hati, S., Vij, S., Singh, B.P., and Mandal, S. 2015. ${\beta}$-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. J. Sci. Food Agric. 95, 216-220. 
  9. Hwang, C.E., An, M.J., Lee, H.Y., Lee, B.W., Kim, H.T., Ko, J.M., Baek, I.Y., Seo, W.T., and Cho, K.M. 2014. Potential probiotic Lactobacillus plantarum P1201 to produce soy-yogurt with enhanced antioxidant activity. Korean J. Food Sci. Technol. 46, 556-565. 
  10. Juan, M.Y. and Chou, C.C. 2010. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybean by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol. 27, 589-591. 
  11. Kim, H.G., Kim, G.W., Oh, H., Yoo, S.Y., Kim, Y.O., and Oh, M.S. 2011. Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT-Food Sci Technol. 44, 992-998. 
  12. Lee, L.S., Choi, E.J., Kim, C.H., Kim, Y.B., Kum, J.S., and Park, J.D. 2014. Quality characteristics and antioxidant properties of black and yellow soybeans. Korean J. Food Sci. Technol. 46, 757-761. 
  13. Lee, J.H., Lee, B.W., Kim, B., Kim, H.T., Ko, J.M., Baek, I.Y., Seo, W.T., Kang, Y.M., and Cho, K.M. 2013. Changes in phenolic compounds (isoflavones and phenolic acids) and antioxidant properties in hjgh-protein soybean (Glycine max L., cv. Saedanbaek) for different roasting conditions. J. Korean Soc. Appl. Biol. Chem. 56, 605-612. 
  14. Lye, H.S., Kuan, C.Y., Ewe, J.A., Fung, W.Y., and Liong, M.T. 2009. The improvement of hypertension by probiotics: effects on cholesterol, diabetes, renin and phytoestrogens. Int. J. Mol. Sci. 10, 3755-3775. 
  15. Marazza, J.A., Garro, M.S., and de Giori, G.S. 2009. Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiol. 26, 333-339. 
  16. Otieno, D.O., Ashton, J.F., and Shah, N.P. 2006. Evaluation of enzymatic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Res. Int. 39, 394-407. 
  17. Pham, T.T. and Shah, N.P. 2007. Biotransformation of isoflavone glycosides by Bifidobacterium animalis in soymilk supplemented with skim milk powder. J. Food Sci. 72, 316-324. 
  18. Pinthong, R., Macrae, R., and Rothwell, J. 1980. The development of a soya-based yoghurt. J. Food Technol. 15, 647-652. 
  19. Pyo, Y.H., Lee, T.C., and Lee, Y.C. 2005. Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70, S215-S220. 
  20. Seo, M.H., Kim, B.N., Kim, K.R., Lee, K.W., Lee, C.H., and Oh, D.K. 2013. Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC40247. Biosci. Biotechnol. Biochem. 77, 1245-1250. 
  21. Starzynska-Janiszewska, A., Stodolak, B., and Mickowska, B. 2014. Effect of controlled lactic acid fermentation on selected bioactive nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris) seeds. J. Sci. Food Agric. 94, 359-366. 
  22. Suzuki, Y., Kosaka, M., Shindo, K., Kawasumi, T., Kimoto-Nira, H., and Suzuki, C. 2013. Identification of antioxidants produced by Lactobacillus plantarum. Biosci. Biotechnol. Biochem. 77, 1299-1302. 
  23. Wang, Y.C., Yu, R.C., and Chou, C.C. 2006. Antioxidant activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol. 23, 128-135. 
  24. Wang, Y.C., Yu, R.C., Yang, H.Y., and Chou, C.C. 2003. Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiol. 20, 333-338. 
  25. Youn, K.S. and Chung, H.S. 2012. Optimization of the roasting temperature and time for preparation of coffee-like maize beverage using the response surface methodology. LWT-Food Sci. Technol. 46, 305-310. 
  26. Zhao, D. and Shah, N.P. 2014. Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation. LWT-Food Sci. Technol. 58, 454-462. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일