$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

품종별 렌틸 추출물의 폴리페놀화합물 함량 및 항산화 활성

Polyphenol Contents and Antioxidant Activities of Lentil Extracts from Different Cultivars

초록

본 연구에서는 렌틸을 이용한 새로운 기능성 소재의 개발에 우선하여 세계적으로 소비량이 비교적 많은 벨루가, 레드, 그린, 프렌치 렌틸을 연구 소재로 선정하고, 0.2% HCl을 함유한 메탄올을 이용하여 추출물을 제조한 후 이들의 항산화 활성을 조사하였다. 총폴리페놀과 플라보노이드 함량은 각각 27.3~30.3 mg TAE/g과 13.14~16.29 mg QUE/g으로 다양하게 나타났으며, 그중 벨루가와 레드 렌틸이 상대적으로 높은 총폴리페놀 함량을 보였다. DPPH와 ABTS 라디칼 소거 활성 및 $H_2O_2$ 소거 활성은 총폴리페놀 함량이 상대적으로 높았던 벨루가와 레드 렌틸이 다른 품종에 비해 유의적으로 높은 활성을 보였으며, 항산화 활성 및 폴리페놀함량과의 비례적 상관관계가 있음을 확인할 수 있었다. ROS 소거 활성이 가장 높았던 벨루가 렌틸을 이용하여 linoleic acid에 대한 과산화 억제 효과를 FTC법으로 조사한 결과, $62.5{\sim}500{\mu}g/mL$에서 농도 의존적으로 유의적인 산화억제효과를 보였으며 $RC_{50}$$222.76{\mu}g/mL$로 확인되었다. 또한, 벨루가 및 레드 렌틸 추출물은 산화적 스트레스 발생을 통해 간세포 손상을 유발하는 것으로 알려진 알코올의 세포독성으로부터 우수한 간세포 보호 효과를 나타내었다. 따라서 향후 추가적인 세포실험과 동물실험을 통한 렌틸의 항산화 활성 검정 및 항산화 기전에 관한 연구가 필요할 것으로 생각되며, 이를 비롯한 다양한 생리활성에 대한 연구들이 이루어진다면 기능성 소재로서 렌틸의 산업적 응용이 활발해질 것으로 기대된다.

Abstract

Lentils (Lens culinaris) have been gaining increasing attention recently as a top five superfood, as they are high in protein and other essential nutrients, including folate, iron, potassium, and various antioxidants. In the present study, phenolic extracts from four different lentil cultivars (green, red, French, and beluga) were evaluated for their total phenolic contents and in vitro antioxidant activities. Total polyphenol and flavonoid contents of four different lentil extracts were 27.30~30.30 mg tannic acid equivalents (TAE)/g and 13.14~16.29 mg quercetin equivalents (QUE)/g, respectively. Beluga and red lentil extracts showed higher polyphenol contents than others (P<0.05), whereas there was no significant difference in flavonoid contents among the four lentil cultivars. $RC_{50}$ values of the lentil extracts for DPPH radical, ABTS radical, and $H_2O_2$ were $57.42{\sim}64.49{\mu}g/mL$, $66.11{\sim}75.69{\mu}g/mL$, and $59.72{\sim}72.86{\mu}g/mL$, respectively. Among the four lentil extracts, beluga lentil extract showed the most potent scavenging effect in all three reactive oxygen species (ROS) scavenging assays, and thus beluga extract was further tested for its inhibitory effect on early peroxidation of linoleic acid. The results showed that beluga lentil extract significantly inhibited linoleic acid peroxidation in a dose-dependent manner (concentration required for 50% reduction=$222.76{\m}g/mL$). In addition, beluga lentil extract showed a significant protective effect against alcohol-induced cytotoxicity in AML-12 cells (normal mouse hepatocyte cell line). Taken together, these results suggest that lentil extracts represent potential sources of natural antioxidants, and further studies will be necessary to determine their protective effects against oxidative stress in vivo.

참고문헌 (27)

  1. Thavarajah D, Thavarajah P, Sarker A, Vandenberg A. 2009. Lentils (Lens culinaris Medikus Subspecies culinaris): a whole food for increased iron and zinc intake. J Agric Food Chem 57: 5413-5419. 
  2. Hefnawy TH. 2011. Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Ann Agric Sci 56: 57-61. 
  3. Galleano M, Pechanova O, Fraga CG. 2010. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr Pharm Biotechnol 11: 837-848. 
  4. Xu BJ, Yuan SH, Chang SKC. 2007. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Chem 72: S167-S177. 
  5. Aguilera Y, Duenas M, Estrella I, Hernandez T, Benitez V, Esteban RM, Martin-Cabrejas MA. 2010. Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. J Agric Food Chem 58: 10101-10108. 
  6. Singleton VL. 1981. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv Food Res 27: 149-242. 
  7. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. 
  8. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. 
  9. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. 
  10. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung Island. Korean J Food Sci Technol 37: 233-240. 
  11. Nakatani N, Kikuzaki H. 1987. A new antioxidative glucoside isolated from oregano (Origanum vulgare L.). Agric Biol Chem 51: 2727-2732. 
  12. Velioglu YS, Mazza G, Gao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46: 4113-4117. 
  13. Khan MA, Ammar MH, Migdadi HM, El-Harty EH, Osman MA, Farooq M, Alghamdi SS. 2015. Comparative nutritional profiles of various faba bean and chickpea genotypes. Int J Agric Biol 17: 449-457. 
  14. Fratianni F, Cardinale F, Cozzolino A, Granese T, Albanese D, Matteo MD, Zaccardelli M, Coppola R, Nazzaro F. 2014. Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J Funct Foods 7: 551-557. 
  15. Goldberg I. 1994. Functional foods. Chapman & Hall Press, New York, NY, USA. p 3-550. 
  16. Nicoletti M. 2012. Nutraceuticals and botanicals: overview and perspectives. Int J Food Sci Nutr 63(S1): 2-6. 
  17. Nam SY, Hong JT, Yun YW, Ahn B, Lee BJ. 2004. Occurrence and measurement of reactive oxygen species in biological systems. J Vet Med Biotechnol 5: 5-14. 
  18. Choi DS, Go HY. 1995. Chemistry of functional food. Ji-Gu Publishing Co., Paju, Korea. p 78-79. 
  19. Kim TS, Kang SJ, Park WC. 1999. Changes in antioxidant and antioxidant enzymes activities of soybean leaves subjected to water stress. J Korean Soc Agric Chem Biotechnol 42: 246-251. 
  20. Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R, Liu Q, Tsao R. 2015. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on ${\alpha}$-glucosidase and pancreatic lipase. Food Chem 172: 862-872. 
  21. Oomah BD, Mazza G. 1996. Flavonoids and antioxidative activities in buckwheat. J Agric Food Chem 44: 1746-1750. 
  22. Amarowicz R, Estrella I, Hernandez T, Duenas M, Troszynska A, Agnieszka K, Pegg RB. 2009. Antioxidant activity of a red lentil extract and its fractions. Int J Mol Sci 10: 5513-5527. 
  23. Kim JP, Yang YS, Kim JH, Lee HH, Kim ES, Moon YW, Kim JY, Chung JK. 2012. Chemical properties and DPPH radical scavenging ability of sword bean (Canavalia gladiata) extract. Korean J Food Sci Technol 44: 441-446. 
  24. Ademiluyi AO, Oboh G. 2012. Attenuation of oxidative stress and hepatic damage by some fermented tropical legume condiment diets in streptozotocin-induced diabetes in rats. Asian Pac J Trop Med 5: 692-697. 
  25. Finkel T, Holbrook NJ. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. 
  26. Jung GT, Ju IO, Choi JS, Hong JS. 2000. The antioxidative, antimicrobial and nitrite scavenging effects of Schizandra chinensis RUPRECHT (Omija) seed. Korean J Food Sci Technol 32: 928-935. 
  27. Das SK, Vasudevan DM. 2007. Alcohol-induced oxidative stress. Life Sci 81: 177-187. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일