$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유역단위 유출 모형 별 기저유출 분석 기법 검토
A Review of Baseflow Analysis Techniques of Watershed-Scale Runoff Models 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.58 no.4, 2016년, pp.75 - 83  

한정호 (Department of Regional Infrastructures Engineering, Kangwon National University) ,  류태상 (Korea Water Resources Corporation) ,  임경재 (Department of Regional Infrastructures Engineering, Kangwon National University) ,  정영훈 (Korea Water Resources Corporation)

Abstract AI-Helper 아이콘AI-Helper

Streamflow is composed of baseflow and direct runoff. However, most of streamflow during dry seasons depends on baseflow. Thus, baseflow analysis is very important to simulate streamflow of dry seasons. Generally, baseflow analysis is conducted using watershed-scale runoff models due to diffilculty ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 각 유역 모형에서의 기저유출 산정 과정은 모형 내 토양 및 대수층의 구조와 수문 분석 방법에 따라 서로 다른 과정을 통해서 이루어진다. 본 연구에서는 국내외에서 널리 활용되고 있는 유역모형인 SWAT, HSPF, PRMS-IV 모형에서의 기저유출 산정 과정을 검토하였다 (Luo et al., 2012; Zhang et al., 2011; Peterson and Mamlet, 1998; Said et al., 2005; Said et al., 2007; Cherkauer, 2004).
  • 하지만 모형에 따라 기저유출은 각기 다른 방법을 통해 산정되기 때문에 다양한 모형을 활용함에 있어 각 모형의 기저유출 분리 및 산정 기법들에 대한 이해와 검토가 선행되어야 한다. 이에 본 연구는 1)문헌연구를 바탕으로 기저유출 분석이 가능한 다양한 유역모형을 비교분석하고, 2)검토 결과를 통해 기저유출 분석을 통한 수문분석을 위한 최적의 유역모형을 제시하였다.
  • 4), 유역모형에 따라 토층수를 산정하는 과정이 다르기 때문이다. 이에 본 연구에서는 유역모형에서의 토층수 및 기저유출 산정과정을 비교 ․ 검토하였다.

가설 설정

  • PRMS-IV 모형은 HRU로 구분하고, 물수지와 에너지수지를 이용하여 각 HRU에서 수문 모의를 한다. HRU는 경사, 경사향, 식생 유형, 토지 유형과 강우분포와 같은 유역 특성을 기초로 유역을 구분한 것이며, 각 HRU는 수문응답에 대해 동일한 반응을 보인다고 가정한다. 각 HRU에서의 수문모의 결과 (지표면 유출, 지표하 유출, 기저유출 등)의 합이 유역 유출구에서의 하천유량이 된다 (Markstrom et al.
  • PRMS-IV 모형은 앞에서 설명한 것과 같이 토양을 크게 선택류 저류지, 모관수 저류지, 중력수 저류지 3개의 저류지를 가정하여 토양수를 모의한다. 각 저류지의 저류량은 사용자가 입력한 매개변수를 기준으로 최대 저류량을 결정한 후 이를 기준으로 산정된다.
  • PRMS-IV 모형은 지하수 저류지를 통해 지하수 저류량 및 기저유출을 모의한다. 여기서 지하수 저류지는 SWAT 모형에서의 얕은 대수층과 유사한 개념이며, PRMS-IV 모형에서 지하수 저류지의 저류량은 무한하다고 가정한다. 지하수 저류지의 유입량은 모관수 저류지, 중력수 저류지, 상류 지하수 저류지에서의 유입량을 모두 합하여 계산된다 (식 (15)).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
미래 장기적 관점에서 수자원 확보를 위해 어떤 노력을 하는가? 국내 수자원 이용량은 매년 증가하고 있지만 (Ministry of Construction Transportation, 2006), 이에 상응한 안정적인 수자원 확보는 기후변화의 영향으로 인해 매년 어려움을 겪고 있다(Ministry of Land, Transport and Maritime Affairs, 2011). 이에 미래 장기적 관점에서 안정적인 수자원 확보를 위해 댐내 토사제거를 통한 저수용량 확보, 대체수원개발, 저수지 운영기술 고도화 등 다양한 노력을 하고 있다. 하지만 이러한 노력에도 기후변화의 영향으로 안정적인 수자원 확보 문제는 매우 중요한 문제로 지속적으로 제기되고 있다.
하천의 유량을 구성하는 요소 중 기저유출은 무엇인가요? 일반적으로 하천의 유량은 직접유출과 기저유출로 구성된다. 직접유출이란 강우가 발생했을 때 단시간에 하천으로 흘러들어가는 유출을 의미하고, 기저유출이란 청천 시 하천 유량의 대부분을 구성하는 유출로 강우 시 토양으로 침투하여 오랜 시간에 걸쳐 대수층을 통해 하천으로 유출되는 것을 의미한다 (Han et al., 2016).
SWAT 모형은 무엇인가요? SWAT 모형은 준분포형 강우 유출 모형으로서 다양한 종류의 토성과 토지이용도 등 복잡한 유역을 대상으로 장기간에 걸친 유출량 예측이 가능하다. SWAT 모형은 이미 많은 선행 연구를 통해 다양한 조건의 국내 유역에 대해서도 적용성 평가가 이루어진 모형이다 (Kong et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (40)

  1. Albek, M., U.B. Ogutveren, and E. Albek, 2004. Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF. Journal of Hydrology 285(1): 260-271. 

  2. Arnold, J.G., and P.M. Allen, 1999. Automated methods for estimating baseflow and ground water recharge from streamflow records1, Wiley Online Library. 

  3. Atkins, J.T., J.B. Wiley, and K.S. Paybins, 2005. Calibration parameters used to simulate streamflow from application of the Hydrologic Simulation Program-FORTRAN model (HSPF) to mountainous basins containing coal mines in West Virginia, US Department of the Interior, US Geological Survey. 

  4. Bae, D., and S. Ha, 2011. Assessing impact of reduction of non-point source pollution by BASINS/HSPF. Evironment Impact Assessment 20(1): 71-78 (In Korean). 

  5. Brodie, R.S., and S. Hostetler, 2005. A review of techniques for analysing baseflow from stream hydrographs. Proceedings of the NZHS-IAH-NZSSS 2005 conference 28. 

  6. Brun, S.E., and E. Lawrence. Band, 2000. Simulating runoff behavior in an urbanizing watershed. Computers, Environment and Urban Systems 24(1): 5-22. 

  7. Caldwell, P.V., J.G. Kennen, G. Sun, J.E. Kiang, J.B. Butcher, M.C. Eddy, L.E. Hay, J.H. LaFontaine, E.F. Hain, and S.A. Nelson, 2015. A comparison of hydrologic models for ecological flows and water availability. Ecohydrology 8(8): 1525-1546. 

  8. Chalise, D.R., 2013. Evaluating temporal and spatial scale issues with hydrologic models in the Black hills, South Dakota, South Dakota School of Mines and Technology. 

  9. Cherkauer, D.S., 2004. Quantifying ground water recharge at multiple scales using PRMS and GIS. Ground Water 42(1): 97-110. 

  10. Cho, J., V.A, Barone, and S. Mostaghimi, 2005. Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed. Agricultural water management 96(10): 1-11. 

  11. Cho, S.H., 2006. Computation of baseflow contribution to streamflow using environmental tracers in three small catchments Yuseong, Daejeon. Ph.D. Diss., Choongnam National University. 

  12. Dams, J., J. Nossent, T. Senbeta, P. Willems, and O. Batelaan, 2015. Multi-model approach to assess the impact of climate change on runoff. Journal of Hydrology 529: 1601-1616. 

  13. Golmohammadi, G., S. Prasher, A. Madani, and R. Rudra, 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology 1(1): 20-39. 

  14. Gupta, V.K. and Sorooshian, S, 1983. Uniqueness and observability of conceptual rainfall-runoff model parameters: The percolation process examined. Water Resources Research 19(1): 269-276. 

  15. Han, J. H., K. J. Lim, and Y. H. Jung, 2016. A study on relationship between streamflow variability and baseflow contribution in Nakdong river basin. Journal of the Korean Society of Agricultural Engineers 58(1): 27-38 (In Korean). 

  16. Kihubyeonhwa daeeung mirae sujawonjeonryak, 2010, Ministry of Construction Transportation. 

  17. Leavesley, G., L. Stannard, and V. Singh, 1995. The precipitationrunoff modeling system-PRMS. Computer models of watershed hydrology: 281-310. 

  18. Lee, G., Y. Shin, and Y. Jung, 2014. Development of Web-based RECESS model for estimating baseflow using SWAT. Sustainability 6(4): 2357-2378. 

  19. Lim, K. J., B. A. Engel, Z. Tang, J. Choi, K. S. Kim, S. Muthukrishnan, and D. Tripathy, 2005. Automated web gis based hydrograph analysis tool, WHAT1, Wiley Online Library. 

  20. Lee, K. Karl, and C. John, Risley, 2002. Estimates of ground-water recharge, base flow, and stream reach gains and losses in the Willamette River Basin, Oregon. US Department of the Interior, US Geological Survey. 

  21. Luo, Y., J. Arnold, P. Allen, and X. Chen, 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrology and Earth System Sciences 16(4): 1259-1267. 

  22. Markstrom, S. L., R. S. Regan, L. E. Hay, R. J. Viger, R. M. Webb, R. A. Payn, and J. H. LaFontaine, 2015. PRMS-IV, the precipitation-runoff modeling system, version 4. US Geological Survey Techniques and Methods, 6-B7. 

  23. Neitsch, S., J. Arnold, J. Kiniry, R. Srinivasan, and J. Williams, 2010. Soil and Water Assessment Tool. User's Manual, Version 2009. Texas Water Resources Institute, Technical Report. 

  24. Peterson, J., and J. Hamlett, 1998. Hydrologic calibration of the SWAT model in a watershed containing fragipan soils1, Wiley Online Library. 

  25. Rutledge, A., 1998. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records: Update, US Department of the Interior, US Geological Survey. 

  26. Ryu, J., 2016. Development and Evaluation of ArcGIS-based watershed-scale Long-term Hydrologic Impact Assessment (L-THIA) ACN-WQ system. Ph.D. Diss., Kangwon National University. 

  27. Ryu, J., J. W. Choi, H. Kang, D. Gum, D. S. Shin, K. H. Lee, G. Jeong, and K. J. Lim, 2012a. Evaluation of groundwater recharge rate for land uses at Mandae stream watershed using SWAT HRU Mapping module. Journal of Korean Society on Water Environment 28(5): 743-753 (In Korean). 

  28. Ryu, J., H. Kang, J. W. Choi, D. S. Kong, D. Gum, C. H. Jnag, and K. J. Lim, 2012b. Application of SWAT-CUP for streamflow auto-calibration at Soyang-gang dam watershed. Journal of Korean Society on Water Environment 28(3): 347-358 (In Korean). 

  29. Said, A., M. Ross, and K. Trout, 2007. Calibration of HSPF using active ground water storage. In World Environmental and Water Resources Congress: 342-342. 

  30. Said, A., D. K. Stevens, and G. Sehlke, 2005. Estimating water budget in a regional aquifer using HSPF-MODFLOW intergrated MODEL1. Journal of the American Water Resources Association 41(1): 55-66. 

  31. Saleh, A., and B. Du, 2004. Evaluation of SWAT and HSPF within BASINS program for the upper North Bosque River watershed in central Texas. Transactions of the ASAE 47(4): 1039. 

  32. Singh, J., H. V. Knapp, J. Arnold, and M. Demissie, 2005. Hydrological modeling of the iroquois river watershed using HSPF and SWAT1, Wiley Online Library. 

  33. Sloto, R. A. and M. Y. Crouse, 1996. HYSEP, a computer program for streamflow hydrograph separation and analysis, US Department of the Interior, US Geological Survey. 

  34. Sobel, R., H. Rifai, and T. Petersen, 2015. Refinement and application of a coupled tidal prism model with HSPF for managing bacterial water quality impairment in a coastal watershed. WIT Transactions on Ecology and the Environment 197: 201-209. 

  35. Spruill, C., S. Workman, and J. Taraba, 2000. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Transactions of the ASAE 43(6): 1431. 

  36. Sujawonjabgkijonghapkyehoek, 2006, Ministry of Construction Transportation. 

  37. Sujawonjabgkijonghapkyehoek, 2011, Ministry of Land, Transport and Maritime Affairs. 

  38. Srinivasan, Raghavan, Xuesong Zhang, and Jeffrey Arnold, 2010. SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Transactions of the ASABE 53(5): 1533-1546. 

  39. Verma, A. K., M. K. Jha, and R. K. Mahana, 2010. Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy and Water Environment 8(2): 131-144. 

  40. Zhang, X., R. Srinivasan, J. Arnold, R. C. Izaurralde, and D. Bosch, 2011. Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework. Hydrological Processes 25(14): 2313-2320. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로