$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

중질유 혹은 감압잔사유의 개질 반응 : Aquathermolysis와 Demetallization
Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization 원문보기

공업화학 = Applied chemistry for engineering, v.27 no.4, 2016년, pp.343 - 352  

이후철 (호서대학교 화학공학과) ,  박승규 (호서대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

지구상에는 1조 6880억 배럴의 원유매장량으로 현재 추세로 채굴하면 향후 53.3년 채굴 가능할 것으로 예측되고 있다. OPEC은 원유값이 10년 내에는 $100이 넘지 않을 것으로 예상하지만, 감산 정책의 정치적 이슈가 등장하면 원유값은 급격히 상승할 수도 있다. 따라서 일반 원유의 고갈에 대비해 비재래형 원유자원인 오일샌드나 비튜맨과 같은 중질유에 대한 관심이 높아지고 있다. 중질유는 일반적으로 레진이나 아스팔텐이라 부르는 탄소수가 60이 넘는 분자량이 높은 화합물 함량이 높아 점도가 높고 끓는점이 높다. 일반 원유를 감압 증류할 때 부생되는 감압잔사유(vacuum residue)는 물리화학적 물성들이 중질유와 비슷하다. 중질유의 채굴을 위해서는 점도를 낮추는 기술이 중요한데 본 리뷰논문은 상업적으로 사용되고 있는 aquathermolysis 기술을 검토하여 보았고 감압잔사유에 적용하여 보았다. 감압잔사유에는 니켈(Ni)바나듐(V)과 같은 전이금속이 함유되어 있는데, 이를 고도화하기 위해서는 전이금속 제거가 선행되어야 한다. 본 리뷰 논문에서는 감압잔사유로부터의 전이금속 제거 기술에 대한 최근 연구결과를 정리하여 보았다.

Abstract AI-Helper 아이콘AI-Helper

It has been estimated that the Earth has nearly 1.688 trillion barrels of crude oil, which will last 53.3 years at current extraction rates. The organization of petroleum exporting countries (OPEC) group forecasted that the oil prices will not jump to triple-digit territory within a decade, but it c...

주제어

참고문헌 (71)

  1. J. Ban, J. L. Arellano, R. F. Aguilera, and M. Tallet, OPEC 2015 World Oil Outlook, 1-361 (2015). 

  2. US Ministry of Defense, Global Strategic Trends-Out to 2045, Fifth Edition (2014). 

  3. R. F. Meyer, E. D. Attanasi, and P. A. Freeman, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, US Department of Interior & US Geological Survey Open File-Report 2007-1084 (2007). 

  4. British Petroleum, BP Statistical Review of World Energy, June (2015). 

  5. L. Hughes and J. Rudolph, Future world oil production: growth, plateau, or peak?, Curr. Opin. Environ. Sustain., 3, 335-234 (2011). 

  6. O. Muraza and A. Galadima, Aquathermolysis of heavy oil: A review and perspective on catalyst development, Fuel, 157, 219-231 (2015). 

  7. N. L. Madureira, Key Concepts in Energy, pp. 125-126, Springer International Publishing (2014). 

  8. S. Sorrell, R. Miller, R. Bentley, and J. Speirs, Oil futures: A comparison of global supply forecasts, Energy Policy, 38, 4990-5003 (2010). 

  9. V. Lam, G. Li, C. Song, J. Chen, C. Fairbridge, R. Hui, and J. Zhang, A review of electrochemical desulfurization technologies for fossil fuels, Fuel Process. Technol., 98, 30-38 (2012). 

  10. World Energy Council, 2010 Survey of Energy Resources, 123-150 (2010). 

  11. A. Bera and T. Babadagli, Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review, Appl. Energy, 151, 206-226 (2015). 

  12. O. Muraza, Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction, J. Anal. Appl. Pyrolysis, 114, 1-10 (2015). 

  13. H. R. Hao, H. J. Su, G. Chen, J. R. Zhao, and L. Hong, Viscosity reduction of heavy oil by aquathermolysis with coordination complex at low temperature, The Open Fuels Energy Sci. J., 8, 93-98 (2015). 

  14. P. R. Kapadia, M. S. Kallos, and I. D. Gates, A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen, Fuel Process. Technol., 131, 270-289 (2015). 

  15. M. Khalil, R. L. Lee, and N. Liu, Hematite nanoparticles in aquathermolysis: A desulfurization study of thiophene, Fuel, 145, 214-220 (2015). 

  16. H. C. Kim, W. J. Jeong, W. C. Lee, and S. K. Park, Demetallization by MCM-48 from asphaltene of vacuum residual oils: Analysis by UV-visible spectroscopy, Asian J. Chem., 27, 4288-4290 (2015). 

  17. L. Lin, F. Zeng, and Y. Gu, A circular solvent chamber model for simulating the VAPEX heavy oil recovery process, J. Pet. Sci. Eng., 118, 27-39 (2014). 

  18. H. H. Kiasari, A. H. Sarapardeh, S. Mighani, A. H. Mohammadi, and B. S. Sola, Effect of operational parameters on SAGD performance in a dip heterogeneous fractured reservoir, Fuel, 122, 82-93 (2014). 

  19. Y. H. Shokrlu, Y. Maham, X. Tan, T. Babadagli, and M. Gray, Enhancement of the efficiency of in situ combustion technique for heavy-oil recovery by application of nickel ions, Fuel, 105, 397-407 (2013). 

  20. N. Mosavat and F. Torabi, Experimental evaluation of the performance of carbonated water injection (CWI) under various operating conditions in light oil systems, Fuel, 123, 274-284 (2014). 

  21. D. W. Zhao, J. Wang, and I. D. Gates, Optimized solvent-aided steam-flooding strategy for recovery of thin heavy oil reservoirs, Fuel, 112, 50-59 (2013). 

  22. F. R. Ahmadun, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, and Z. Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170, 530-551 (2009). 

  23. J. Peng, G. Q. Tang, and A. R. Kovscek, Oil chemistry and its impact on heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 47-59 (2009). 

  24. R. C. K. Wong and B. B. Maini, Gas bubble growth in heavy oil-filled sand packs under undrained unloading, J. Pet. Sci. Eng., 55, 259-270 (2007). 

  25. J. Wang, Y. Z. Yuan, L. Zhang, and R. Wang, The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 69-74 (2009). 

  26. D. Yuan, J. Hou, Z. Song, Y. Wang, M. Luo, and Z. Zheng, Residual oil distribution characteristic of fractured-cavity carbonate reservoir after water flooding and enhanced oil recovery by $N_2$ flooding of fractured-cavity carbonate reservoir, J. Pet. Sci. Eng., 129, 15-22 (2015). 

  27. J. B. Hyne, J. W. Greidanus, J. D. Tyrer, et al., In: 2nd Int. Conf. "The Future of Heavy Crude and Tar Sands." Caracas, Venezuela, 7-17 February 1982, pp. 404-411, McGraw Hill, New York (1984). 

  28. Y. H. Shokrlu and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications, J. Pet. Sci. Eng., 119, 210-220 (2014). 

  29. M. F. Ali and S. Abbas, A review of methods for the demetallization of residual fuel oils, Fuel Process. Technol., 87, 573-584 (2006). 

  30. J. G. Reynolds, Removal of nickel and vanadium from heavy crude oils by exchange reactions, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 49, 79-80 (2004). 

  31. F. Iskandar, E. Dwinanto, M. Abdullah, Khairurrijal, and O. Muraza, Viscosity reduction of heavy oil using nanocatalyst in aquathermolysis reaction, KONA Powder Part. J., 33, 3-16 (2016). 

  32. F. Zhao, X. Wang, Y. Wang, and Y. Shi, The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions, J. Chem. Pharm. Res., 6(5), 2037-2041 (2014). 

  33. S. K. Maity, J. Ancheyta, and G. Marroquin, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review, Energy Fuels, 24, 2809-2816 (2010). 

  34. Y. Wang, Y. Chen, J. He, P. Li, and C. Yang, Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions: $Fe^{3+}$ and $Mo^{6+}$ , Energy Fuels, 24, 1502-1510 (2010). 

  35. C. Wu, G. L. Lei, C. J. Yao, K, J. Sun, P. Y. Gai, and Y. B. Cao, Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst, J. Fuel Chem. Technol., 38, 684-690 (2010). 

  36. H. X. Xu and C. S. Pu, Experimental study of heavy oil underground aquathermolysis using catalyst and ultrasonic, J. Fuel. Chem. Technol., 39, 606-610 (2011). 

  37. H. Wang, Y. Wu, L. He, and Z. Liu, Supporting tungsten oxide on zirconia by hydrothermal and impregnation methods and its use as a catalyst to reduce the viscosity of heavy crude oil, Energy Fuels, 26, 6518-6527 (2012). 

  38. P. Jing, Q. Li, M. Han, D. Sun, L. Jia, and W. Fang, Effect of $Ni^{2+}$ and $Sn^{2+}$ modified $SO_4\;^{2-}$ / $ZrO_2$ solid super-acid catalysts on visbreaking of heavy petroleum oil, Shiyou Huagong / Petrochem. Technol., 36, 237-241 (2007). 

  39. D. H. Freeman and T. C. O'Haner, Derivative spectrophotometry of petroporphyrins, Energy Fuels, 4, 688-694 (1990). 

  40. C. Ovalles, P. R. Unda, J. Bruzual, and A. Salazar, Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator, Am. Chem. Soc. Div. Fuel. Chem., 48, 59-60 (2003). 

  41. N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, B. P. Tumanyan, L. E. Foss, I. P. Kosachev, R. Z. Musin, A. I. Ramazanova, and A. V. Vakhin, Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aqiathermolysis, Chem. Technol. Fuels Oils, 50, 315-326 (2014). 

  42. B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev, G. P. Kayukova, and N. N. Petrukhina, Promising aspects of heavy oil and native asphalt conversion under field conditions, Chem. Technol. Fuels Oils, 50, 185-188 (2014). 

  43. M. Bahram and P. Kobra, Determination of Vanadyl Porphyrins by Liquid-liquid microextraction and nano-baskets of p-tert-Calix[4 ]arene bearing di-[N-(X)sulfonye carboxamide] and di-(1-propoxy) in ortho-cone conformation, Chem. Res. Chin. Univ., 28(5), 807-813 (2012). 

  44. J. N. R. Olvera, G. J. Gutierrez, J. A. R. Serrano, A. M. Ovando, V. G. Febles, and L. D. B. Arceo, Use of unsupported, mechanically alloyed NiWMoC nanocatalyst to reduce the viscosity of aquathermolysis reaction of heavy oil, Catal. Commun., 43, 131-135 (2014). 

  45. M. A. Banares and J. L. G. Fierro, Selective oxidation of methane to formaldehyde on supported molybdate catalysts, Catal. Letters, 17, 205-211 (1993). 

  46. J. S. F. Pereira, D. P. Moraes, F. G. Antes, L. O. Diehl, M. F. P. Santos, R. C. I. Guimaraes, T. C. O. Fonseca, V. L. Dressler, and E. M. M. Flores, Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion, Microchem. J., 96, 4-11 (2010). 

  47. Y. Chen, T. Wang, J. Lu, and C. Wu, The viscosity reduction of nano-keggin- $K_3PMo_{12}O_{40}$ in catalytic aquathermolysis of heavy oil, Fuel, 88, 1426-1434 (2009). 

  48. Y. Chen, C. Yang, and Y. Wang, Gemini catalyst for catalytic aquathermolysis of heavy oil, J. Anal. Appl. Pyrolysis, 89, 159-165 (2010). 

  49. H. Fan, Y. Zhang, and Y. Lin, The catalytic effects of minerals on aquathermolysis of heavy oils, Fuel, 83, 2035-2039 (2004). 

  50. S. Merissa, P. Fitriani, F. Iskandar, M. Abdullah, and Khairurrijal, Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil, Padjadjaran International Physics Symposium, PIPS-2013, 131-134 (2013). 

  51. A. S. Junaid, W. Wang, C. Street, M. Rahman, M. Gersbach, S. Zhou, W. McCaffrey, and S. M. Kuznicki, Viscosity reduction and upgrading of Athabasca oilsands bitumen by natural zeolite cracking, Int. J. Chem. Mol. Nucl. Mater. Metallur. Eng., 4, 609-614 (2010). 

  52. O. Korkuna, R. Leboda, J. S. Zieba, T. Vrublevska, V. M. Gunko, and J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Microporous Mesoporous Mater., 87, 243-254 (2006). 

  53. K. A. Gould, Oxidative demetallization of petroleum asphaltenes and residua, Fuel, 59, 733-736 (1980). 

  54. A. Atesa, G. Azimic, K. H. Choi, W. H. Green, and M. T. Timko, The role of catalyst in supercritical water desulfurization, Appl. Catal. B, 147, 144-155 (2014). 

  55. M. Sattarin, H. Modarresi, H. Talachi, and M. Teymori, Solvent deasphalting of vacuum residue in a bench-scale unit, Pet. Coal, 48(3), 14-19 (2006). 

  56. R. N. Magomedov, A. Z. Popova, T. A. Maryutina, K. M. Kadiev, and S. N. Khadzhiev, Current status and prospects of demetallization of heavy petroleum feedstock (Review), Pet. Chem., 55, 267-290 (2015). 

  57. H. Jo, S. G. Moun, Y. M. Jo, and Y. Chung, A patent analysis on impurity removal and catalysts for crude oil purification, Clean Technol., 16, 1-11 (2010). 

  58. A. K. Lee, A. M. Murray, and J. G. Reynolds, Metallopetroporphyrins as process indicators: Separation of petroporphyrins in green river oil shale pyrolysis products, Fuel Sci. Technol. Int., 13, 1081-1097 (1995). 

  59. A. Treibs, On the chromophores of porphyrin systems, Ann. N. Y. Acad. Sci., 206, 97-115 (1973). 

  60. H. Fukuyama, S. Teraia, M. Uchidab, J. L. Cano, and J. Ancheyta, Active carbon catalyst for heavy oil upgrading, Catal. Today, 98, 207-215 (2004). 

  61. P. Bruggemann, F. Baitalow, P. Seifert, B. Meyer, and H. Schlichting, Behaviour of heavy metals in the partial oxidation of heavy fuel oil, Fuel Process. Technol., 91, 211-217 (2010). 

  62. M. Soylak, A. U. Karatepe, L. Elci, and M. Dogan, Column preconcentration/ separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using Amberlite XAD-1180, Turk. J. Chem., 27, 235-242 (2003). 

  63. L. Li, N. Tang, Y. Wang, W. Cen, J. Liu, and Y. Zhou, Investigation of hexagonal mesoporous silica-supported composites for trace moisture adsorption, Nano Scale Res. Letters, 10, 1-7 (2015). 

  64. S. Wang, X. Xu, J. Yang, and J. Gao, Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation, Fuel Process. Technol., 92, 486-492 (2011). 

  65. A. J. Varma, S. V. Deshpande, and J. F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydr. Polym., 55, 77-93 (2004). 

  66. I. Lukec, K. S. Bionda, and D. Lukec, Prediction of sulphur content in the industrial hydrotreatment process, Fuel Process. Technol., 89, 292-300 (2008). 

  67. S. B. Seo, T. Kajiuchi, D. I. Kim, S. H. Lee, and H. K. Kim, Preparation of water soluble chitosan blendmers and their application to removal of heavy metal ions from wastewater, Macromol. Res., 10, 103-107 (2002). 

  68. J. Luan, A. Li, T. Su, and X. Li, Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China, J. Hazard. Mater., 166, 1109-1114 (2009). 

  69. N. N. Nassar, M. M. Husein, and P. P. Almao, Ultradispersed particles in heavy oil: Part II, sorption of $H_2$ S(g), Fuel Process. Technol., 91, 169-174 (2010). 

  70. H. O. Bakare, A. O. Esan, and O. M. Olabemiwo, Characterisation of Agbabu natural bitumen and its fractions using Fourier transform infrared spectrometry, Chem. Mater. Res., 7, 1-11 (2015). 

  71. Y. Yamada, S. Matsumoto, H. Kakiyama, and H. Honda, Removal of heavy metal contained in petroleum heavy oil, Japanese Patent 54-110206 (1979). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로