$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내 및 해외의 해수담수화 기술 비교분석
Comparative Analysis of Seawater Desalination Technology in Korea and Overseas 원문보기

대한환경공학회지 = Journal of Korean Society of Environmental Engineers, v.38 no.5, 2016년, pp.255 - 268  

황문현 (광주과학기술원 글로벌담수화연구센터) ,  김인수 (광주과학기술원 글로벌담수화연구센터)

초록
AI-Helper 아이콘AI-Helper

기후변화는 현재 사용되고 있는 지표수 및 지하수 등의 담수자원 외에도 새로운 수자원을 확보해야할 필요성을 증가시켰다. 해수담수화 시장은 이러한 변화에 따라서 매년 급증하고 있는 상황이며, 이에 발맞추어 2007년 해수담수화 플랜트 사업단이 국내에서 출범하였다. 2014년에 종료된 해수담수화플랜트 사업단은 증발식 해수담수화 기술에 치우친 국내 기술을 역삼투방식 해수담수화 기술로 선회할 수 있도록 이끌었다. 현재 세계 최고의 역삼투방식 해수담수화 기술 에너지 효율성은 약 $3.5kWh/m^3$ 전후로 조사된다. 기장 플랜트의 수준은 $3.8{\sim}4.0kWh/m^3$ 수준으로 비록 세계 최고 수준에는 미치지 못하나, 선두권이라 하기에는 부족함이 없는 것으로 사료된다. 한편, 세계 역삼투방식 해수담수화 기술은 평준화 수준에 이른 것으로 사료되며, 에너지 저감을 위해 새로운 기술을 개발하고자 경쟁중이다. 미래 해수담수 시장에서 경쟁할 것으로 예상되는 기술로 정삼투공정, 막증발법 등이 있으며, 이를 위해 국내에서도 정역삼투 융합공정 개발, 막증발법 및 얍력지연삼투등의 기술개발을 진행중에 있다. 이를 통하여 국내 기술수준을 $2.5kWh/m^3$까지 낮출 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

Climate change has increased the need to secure a new water resource in addition to the traditional water resources such as surface water and ground water. The seawater desalination market is growing sharply in accordance with this situation in Korea, "seawater engineering & architecture of high eff...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
차세대 해수담수화 기술로 연구되고 있는 것은? 따라서, 해수담수 선진국 내에서는 생산수 단가 저감을 위한 차세대 해수담수화 기술에 대해서 연구가 활발하게 진행되고 있다. 전 세계에서 가장 주목받고 있는 해수담수화 기술은 정삼투 기술(Forward Osmosis, FO)과 막증발 기술(Membrane Distillation, MD)이 대표적이다. Fig.
해수담수화의 기술트렌드가 증발식에서 역삼투 기술로 변화한 계기는? 이것은 타지역에 비해 에너지 비용이 저렴한 중동지역을 중심으로 해수담수화 기술이 발전하였으며, 장기간 운영 등을 통해 안정성이 입증된 기술이기 때문이었다. 그러나 비록 쉐일가스 개발 등의 요인으로 인하여 하락하기는 하였으나, 2011년 배럴당 126.65$를 고점을 나타내었던 시점까지 에너지 비용의 증가는 해수담수화 시장에서의 기술 트랜드를 증발식 기술에서 에너지 비용이 저렴한 역삼투 기술로 변화시키기에 충분하였다. Desalination Market 2016에 따르면, 현재 발주되거나 혹은 예상되는 해수담수화 플랜트의 90%가 역삼투공정이다.
다단플래쉬 공정이 널리 쓰였던 이유는? 세계 해수담수화 시장에서의 지배적인 기술은 2000년 이전까지 다단플래쉬 공정(Multi-Stage Flush, MSF)으로 대변되는 증발식이 지배적인 기술이었다. 이것은 타지역에 비해 에너지 비용이 저렴한 중동지역을 중심으로 해수담수화 기술이 발전하였으며, 장기간 운영 등을 통해 안정성이 입증된 기술이기 때문이었다. 그러나 비록 쉐일가스 개발 등의 요인으로 인하여 하락하기는 하였으나, 2011년 배럴당 126.
질의응답 정보가 도움이 되었나요?

참고문헌 (50)

  1. Desalination Markets 2016, Global Water Intelligence(2015). 

  2. Desalination Markets 2010, Global Water Intelligence(2010). 

  3. Wittholz, M. K., O'Neill, B. K., Colby, C. B. and Lewis, D., "Estimating the Cost of Desalination Plants Using a Cost Database," Desalination, 229, 10-20(2008). 

  4. www.desaldata.com 

  5. Voutchkov, N., "World Class Desalination Energy & the Environment," www.adelaide.edu.au(2011). 

  6. Campos, C., "The Economics of Desalination for Various Uses," www.rac.es/ficheros/doc/00731.pdf. 

  7. Liberman, B. and Liberman, I., "Starting Procedure of High-Pressure Pump with De-Rated Moter for Large-Scale SWRO Trains," Desalination, 132, 293-298(2000). 

  8. Sauvet-Goichon, B., "Ashkelon Desalination Plant-A Successful Challenge," Desalination, 203, 75-81(2007). 

  9. Martinho, A., "The High Pressure Pump Train on Reverse Osmosis Plants. Experience and Current Trends," Desalination, 138, 219-222(2001). 

  10. Guirguis, M. J., Energy Recovery Devices in Seawater Reverse Osmosis Desalination Plants with Emphasis on Efficiency and Economical Analysis of Isobaric versus Centrifugal Devices, Thesis of Master in University of South Florida(2011). 

  11. Farooque, A. M., Jamaluddin, A. T. M., Al-Rewell, A. R., Jalaluddin, P. A. M., Marwani, S. M., Al-Mobayed, S. S. A. and Qasim, A. H., Comparative Study of Various Energy Recovery Devices Used in SWRO Process, Issued as Technical Report No. TR.3807/EVP02005(2004). 

  12. Yun, T. I., Gabelich, C. J., Cox, M. R., Mofidi, A., A. and Lesan, R., "Reducing Costs for Large-scale Desalting Plants Using Large-diameter, Reverse Osmosis Membranes," Desalination, 189, 141-154(2006). 

  13. Lisa Henthorne, P. E., Bartels, C., Bergman, R., Hallan, M., Kanppe, P., Losier, J., Metcalfe, P., Peery, M. and Shelby, I., "Large Diameter RO Technology," www.grahamtek.com 

  14. Guidelines for Drinking-Water Quality, WHO Forth Edition (2011). 

  15. Bartels, C. R., Franks, R. and Bates, W., "Design Advantages for SWRO using Advanced Membrane Technology," IDA J. Desalination and Water Reuse, 2(24), 21-25(2010). 

  16. Fritzmann, C., Lowenberg, J., Wintgens, T. and Melin, T., "Stateof-the-art of reverse osmosis desalination," Desalination, 216, 1-76(2007). 

  17. Wilf, M., Tedesco, S., Arnold, H. and Hudkins, J., "Effectvie Desing of Seawater RO Systems with New Generation of High Permeability Membrane Elements," IDA World congress, San Diego, USA(2015). 

  18. Winter, H., "Twenty Years Exprience in Seawater Reverse Osmosis and How Chemicals in Pretreatment Affect Fouling of Membrane," Desalination, 110, 93-96(1997). 

  19. World Intellectual Property Organization, Apparatus for Treating Soultions of High Osmotic Strength, Patent Application Number PCT/US2005/006224(2005). 

  20. Garcia Molina, V., Busch, M. and Sehn, P., "Cost Savings by Novel Seawater Reverse Osmosis Elements and Design Concepts," Desal. and Water Treatment, 7, 160-177(2009). 

  21. Penate, B. and Garcia-Rodriguez, L., "Reverse Osmosis Hybrid Membrane Inter Stage Design : A Comparative Performance Assessment," Desalination, 281, 354-363(2011). 

  22. Spiritos, E. and Lipchin, C. Water Policy in Israel: Chapter 7 Desalination in Israel, Springer, pp. 101-123(2013). 

  23. Carlsbad Seawater Desalination Project, Energy Minimization and Greenhouse Gas Reduction Plan, Http://carlsbaddesal.com/ (2008). 

  24. Thompson, N. A. and Nicoll, P. G., "Forward Osmosis Desalination: A Commercial Reality," IDA World Congress, Perth Australia(2011). 

  25. Roh, I., Li, C., Kaur, S., Revanur, R., Klare, J., Benton, C., Desormeaux, E. and Bakajin, O., "Development of High Performance FO Membrane and Element for High Revery at Minimal Energy Cost," The 8th International Desalination Workshop, pp. 10-12(2015). 

  26. Seminat, R., Sapoznik, J. and Hasson, D., "Energy Aspects in Osmosis Processes," Desalination and Water Treatment, 15, 228-235(2012). 

  27. Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S. and Elimelech, M., "Forward Osmosis: Where Are We Now?," Desalination, 356, 271-284(2015). 

  28. Bamaga, O. A., Yokochi, A. and Beaudry, E. G., "Application of Forward Osmosis in Pretreatment of Seawater for Small Reverse Osmosis Desalination Units," Desalination and Water Treatment., 5, 183-191(2009). 

  29. Bodell, B. R., Silicone Rubber Vapor Diffusion in Saline Water Distillation, US Patent 285,032(1963). 

  30. Fujii, Y., Kigoshi, S., Iwatani, H. and Aoyama, M., "Selectivity and characteristics of direct contact membrane distillation type experiment. : I. Permeability and selectivity through dried hydrophobic fine porous membranes," J. Membr. Sci., 72, 53-72(1992). 

  31. Fujii, Y., Kigoshi, S., Iwatani, H., Aoyama, M. and Fusaoka, Y., "Selectivity and characteristics of direct contact membrane distillation type experiment : II. Membrane treatment and selectivity increase," J. Membr. Sci., 72, 73-89(1992). 

  32. El-Bourawi, M. S., Ding, Z., Ma, M. and Khayet, M., "A framework for better understanding membrane distillation separation process," J. Membr. Sci., 285, 4-29(2006). 

  33. Wang, P. and Chung, T. S., "Recent Advances in Membrane Distillation Processes: Membrnae Development, Configuration Design and Application Exploring," J. Membr. Sci., 474, 39-56(2015). 

  34. Wang, P., Teoh, M. M. and Chung, T. S., "Morphological Architecture of Dual-Layer Hollow Fiber for Membrane Distillation with Higher Desalination Performance," Water Res., 45, 5489-5500(2011). 

  35. Schwantes, R., Cipollina, A., Gross, F., Koschikowski, J., Pfeifle, D., Rolletschek, M. and Subiela, V., "Membrane Distillation: Solar and Waste Heat Driven Demonstation Plants for Desalination," Desalination, 323, 93-106(2013). 

  36. Koschikowski, J., Wieghaus, M. and Rommel, M., "Solar Thermal-Driven Desalination Plants Based on Membrane Distillation," Desalination, 156, 295-304(2003). 

  37. Guillen-Burrieza, E., Blanco, J., Zaragoza, G., Alarcon, D. C., Palenzuela, P., Ibarra, M. and Gernjak, W., "Experimental Analysis of an Air Gap Membrane Distillation Solar Desalination Pilot System," J. Membr. Sci., 379, 386-396(2011). 

  38. Barnat, F., Jwaied, N., Rommel, M., Koschikowski, J. and Wieghaus, M., "Performance Evaluation of the "Large SMADES" Autonomous Desalination Solar-Driven Membrane Distillation Plant in Aqaba, Jordan," Desalination, 217, 17-28(2007). 

  39. Wang, X., Zhang, L., Yang, H. and Chen, H, "Feasibility research of potable water production via solar-heated hollow fiber membrane distillation system," Desalination, 247, 403-411(2009). 

  40. Walton, J. Lu, H., Turner, C., Solis, S. and Hein, H., Solar and Waste Heat Desalination by Membrane Distillation, U.S. Department of the Interior Bureau of Reclamation, Final Report 98-FC-81-0048 Desalintion Research and Development Program(2000). 

  41. Kullab, A., Liu, C. and Martin, A., Solar desalination using membrane distallation - technical evaluation case study, International Solar Energy Society Conference, Orlando, FL, August(2005). 

  42. Banat, F. and Jwaied, N., "Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units," Desalination, 220, 566-573(2008). 

  43. Hogan, P. A., Sudjito, Fane, A. G. and Morrison, G. L., "Desalination by Solar Heated Membrane Distillation," Desalination, 81, 81-90(1991). 

  44. Jansen, A. and Bikel, M., "Water Treatment, How Do Membrane Position Today?," Developing Future Water Technologies-Membranes, Dipoli, Espoo, Finland(2011). 

  45. Kim, S. H., Oh, B. S., Hwang, M. H., Hong, S. K., Kim, J. H., Lee, S. H. and Kim, I. S., "An Ambitious Step to the Future Desalination Technology:SEAHERO R&D Program (2007-2012)," Appl. Water Sci., 1, 11-17(2011). 

  46. Wilf, M. and Bartels, C., "Optimization of Seawater RO Systems Design," Desalination, 173, 1-12(2005). 

  47. The Valuation of Output in SEAHERO program, Technovation Partners(2013). 

  48. Wan, C. F. and Chung, T. S., "Energy Recovery by Pressure Retarded Osmosis (PRO) in SWRO-PRO integrated Process," Applied Energy, 162, 687-698(2016). 

  49. Voutchkov, N., Desalination Engineering Planning and Design, McGraw-Hill, pp. 359-443(2013). 

  50. She, Q., Wang, R., Fand, A. G. and Tang, C. Y., "Membrane Fouling in Osmotically Driven Membrane Processes: A Review," J. Membr. Sci., 499, 201-233(2016). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로