$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

잠제설치에 따른 만성리해빈에서 해안선의 장기변화 예측

Predicting Long-Term Shoreline Change Due to the Construction of Submerged Breakwaters in Manseongri Beach

초록

만성리 해안은 중조차 해빈으로 조립한 해저질으로 구성되어 있으며, 외해에 대해 남동쪽으로 열려있어 조석 조류보다 파랑에 의한 해빈변형이 우세하게 나타났다. 파랑은 춘계와 하계에 강하여 유의파고가 2~3m에 달하는 폭풍파가 자주 출현하였으나 추계와 동계는 고파랑이 출현하지 않는 정온한 해상상태를 보였다. 관측된 해안선변화의 계절적 특징은 입사파와 깊은 관계를 나타내었다. 춘계와 하계의 고파랑시에 해안선이 침식하였고 추계과 동계의 정온시에 침식을 회복하였다. 이런 현장자료를 바탕으로 실측해안선자료를 사용하여 해안선변화의 검증수치실험을 수행하였는데, 검증매개변수 $C_1=0.2$$C_2=1C_1$일 때 사후예측된 해안선은 실측해안선과의 RMS 오차가 1.26 m 정도로 만족스러웠다. 이 값을 사용하여 잠제와 도류제 등이 완공된 10년 후 만성리 해빈의 해안선을 예측한 결과, 잠제배후역에서 5~15 m 정도 해안선이 전진하며, 잠제배후역 북측에서 5~15 m 정도 해안선이 후퇴하는 결과를 나타내었다.

Abstract

The Manseongri Coast meets the sea on the southeast and is composed of coarse sediment as a mesotidal beach. The waves that strike the beach are stronger than the tides or tidal currents as external forces of beach deformation. Storm waves frequently reach significant wave heights of 2-3m and hit in spring and summer, leaving the sea calm during fall and winter. Incident waves reach remarkable heights that correspond with observed shoreline changes. The shoreline erodes in spring and summer due to these strong waves but recovers in fall and winter as a result of the more moderate waves. On the basis of these observed results, a numerical calibration for experiments on shoreline change was established. Results revealed that according to hindcast data, calculated shoreline changes agreed with the observed shoreline, with a minimum RMS error of 1.26m with calibration parameters $C_1=0.2$ and $C_2=1C_1$. Using these calibration parameters, long-term shoreline change was predicted after the construction of submerged breakwaters and jetties, etc. The numerical model showed that the shoreline would move forward by 5-15m behind the submerged breakwaters and recede by 5-15m north of the structure.

저자의 다른 논문

참고문헌 (20)

  1. Davies, J. L.(1964), A morphogenic approach to world shorelines, Ziets. Gemorph., Vol. 8, pp. 126-142. 
  2. Haenam-Gun County(2008), Report of sand loss survey and management plan in Songho Beach, p. 100. 
  3. Hallermeier, R. J.(1983), Sand transport limit in coastal structure design, Proc. Coastal Structures '83, ASCE, pp. 253-277. 
  4. Haslett, S. K.(2009), Coastal systems, Taylor & Fransis Group, 2nd Ed., p. 276. 
  5. Horikawa, K.(1988), Nearshore dynamics and coastal processes, Univ. of Tokyo Press, p. 529. 
  6. Komar, P. D.(1976), Beach processes and sedimentation, Prentice Hall Inc., Englewood Cliffs, New Jersey, p. 429. 
  7. Korea Tourism Organization(2010), Report for the technical review of beach stabilization in the beach resorts, p. 333. 
  8. Kraus, N. C.(1981), One-line model development and simulation for Oarai beach, NERC Report No. 15, Japan, pp. 155-192. 
  9. Lee, J. S. and I. H. Park(1990), A shoreline change model around coastal structures, Journal of Korean Society of Coastal and Ocean Engineering, Vol. 2, No. 2, pp. 67-74. 
  10. Lee, J. S., K. H. Kwon and I. H. Park(2014), Analysis of littoral currents by the coupled hydrodynamic model, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 2, pp. 247-258. 
  11. Ministry of Oceans and Fisheries(2013), The basic and execution design report for the coastal improvement project in Yeosu Manheung Area, p. 582. 
  12. Ozasa, H. and A. H. Brampton(1980), Mathematical modelling of beaches backed by seawalls, Coastal Eng., Vol. 4, No. 1, pp. 47-64. 
  13. Park, I. H.(1994), Sediment transport and beach deformation models in the littoral zone, Ph.D. Thesis, Department of Ocean Engineering, National Fisheries University of Pusan, p. 162. 
  14. Park, I. H. and Y. K. Lee(2007), Long term shoreline change and evaluation of total longshore sediment transport rate on Hupo Beach, Journal of Korean Society of Ocean Engineering, Vol. 21, No. 4, pp. 15-20. 
  15. Park, I. H. and Y. K. Lee(2010), Shoreline change near the Daewangam Beach influenced by stream flows in the East Coast of Korea, The Journal of Korean Island, Vol. 22, No. 1, pp. 151-166. 
  16. Swart, D. H.(1974), Offshore sediment transport and equilibrium beach profiles, Delft Hydraulics Laboratory Publication, p. 131. 
  17. The SWAN Team(2015), SWAN User Manual - SWAN Cycle III version 41.01AB, Environmental Fluid Mechanics Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, home page: http://www.swan.tudelft.nl. 
  18. Uda, T.(2004), Coastal erosion - The realities and solutions, Sankaido Co., Ltd., Japan, p. 241. 
  19. Williams, A. and A. Micallef(2009), Beach Management Principles and Practice, Earthscan, p. 445. 
  20. Yeosu City(2012), Report for simulation investigation of the black sand in Manseongri Beach, p. 125. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일