$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

탄소나노튜브를 활용한 나노 통신 시스템 연구

Nano Communication Systems Using Carbon Nanotube

초록

나노 통신 시스템 기술은 통신기술과 나노기술의 융합 분야로서 밀리미터 수준의 통신 모듈 크기에 머물고 있는 현 기술수준을 뛰어넘어 수백 나노미터에서 수십 마이크로미터 이하 단위의 극소형 무선통신 시스템 구현을 가능케 하는 미래 핵심 기술 분야이다. 특히, 최근 제안된 탄소나노튜브의 전기적/기계적 속성을 활용한 신규 극소형 나노 무선 통신시스템 기술은 기존 송수신 구조를 단순히 소형화하는 것이 아니라 구조 자체를 바꾸는 새로운 접근 방식을 제시하고 있다. 따라서, 본 논문에서는 탄소나노튜브(carbon nanotube, CNT)를 활용한 극소형 나노 무선 송수신기 실현 관점에서의 연구현황을 살펴보고 나노 기술과 통신 기술의 융합을 위한 주요 핵심 연구이슈를 제시한다.

Abstract

Nano communication system technologies are future core technologies that facilitate the implementation of tiny wireless communication systems with sizes in the range of hundreds of nanometers to tens of micrometers, which cannot be implemented by current wireless communication system technologies. In particular, novel nano communication system technology, which is based on electrical and mechanical resonance characteristics of carbon nanotube(: CNT), does not simply miniaturize system modules, but suggests a new approach that changes system architectures. Therefore, this paper surveys the state of the art on CNT-based nano communication technologies in aspects of system implementation, and proposes important research issues for convergence of nano and communication technologies.

참고문헌 (22)

  1. I. Fkyildiz and J. Jornet, "Electromagnetic Wireless Nanosensor Networks," Nano Communication Networks (Elsevier), vol. 1, no. 1, Mar. 2010, pp. 3-19. 
  2. I. Akyildiz. and J. Jornet, "The Internet of Nano-Things," IEEE Wireless Communications Mag., vol. 17, no. 6, Dec. 2010, pp. 58-63. 
  3. P. Burke and C. Rutherglen, "Towards a single-chip, implantable RFID system: is a single-cell radio possible?" Biomed Microdevices. vol. 12, no. 4, Aug. 2010, pp. 589-596. 
  4. K. Jensen, J. Weldon, H. Garcia, and A. Zettl, "Nanotube Radio," Nano Letters, vol 7, no. 11, Oct. 2007, pp. 3508-3511. 
  5. C. Rutherglen and P. Burke, "Carbon Nanotube Radio," Nano Letters, vol. 7, no. 11, Oct. 2007, pp. 3296-3299. 
  6. M. Usami, H. Tanabe, A. Sato, I. Sakama, Y. Maki, T. Iwamatsu, T. Iposhi, and Y. Inoue "A $0.05{\time}0.05$ mm2 RFID Chip with Easily Scaled-Down ID-Memory," IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, USA, Feb. 2007. 
  7. D. Shi, "A Fully Integrated CMOS Receiver," Ph.D's Thesis, The University of Michigan, 2008. 
  8. N. Mathur, "Beyond the silicon road map", Nature, vol. 419, Oct. 2002, pp. 573-575. 
  9. P. J. Burke, S. Li, and Z. Yu "Quantitative theory of nanowire and nanotube antenna performance," IEEE Trans. Nanotechnology, vol. 5, no. 4, July 2006, pp. 314-334. 
  10. J. Jornet and I. Akyildiz, "Graphene-based Nano-antennas for Electromagnetic Nanocommunications in the Terahertz Band," In Proc. of European Conf. on Antennas and Propagation(EUCAP) 2010, Barcelona, Spain, Apr. 2010. 
  11. W. Heer, A. Chatelain, and D. Ugarte, "Carbon Nanotube Field Emission Electron Source," Science, vol. 270, no. 5239, Nov. 1995, pp. 1179-1180. 
  12. P. Poncharal, Z. Wang, D. Ugarte, and W. Heer, "Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes," Science, vol. 283, no. 5407, Mar. 1999, pp. 1513-1516. 
  13. D. Dragoman and M. Dragoman, "Tunneling Nanotube Radio," J. of Applied Physics, vol. 104, no. 7, Oct. 2008, pp. 074314. 
  14. J. Weldon, K. Jensenl, and A. Zettl, "Nanomechanical radio transmitter," Physical Status Solidi, vol. 245, no. 10, Oct. 2008, pp. 2323-2325. 
  15. J. Weldon, B. Aleman, A. Sussman, W. Gannett, and A. Zettl, "Sustained Mechanical Self-Osciilations in Carbon Nanotubes," Nano Letters, vol. 10, no. 5, Apr. 2010, pp. 1728-1733. 
  16. C. Koksal and E. Ekici, "A Nanoradio Architecture for Interacting Nanonetworking Tasks," Nano Communication Networks(Elsevier) J., vol. 1, no. 1, Mar. 2010, pp. 63-75. 
  17. C. E. Koksal, E. Ekici, and S. Rajan, "Design and Analysis of Systems Based on RF Receivers with Multiple Carbon Nanotube Antennas," Nano Communication Networks(Elsevier) J., vol. 1, no. 3, Sept. 2010, pp 160-172. 
  18. B. Atakan and O. Akan, "Carbon Nanotube-Based Nanoscale Ad Hoc Networks," IEEE Communications Mag., vol. 48, no. 6, June 2010, pp. 129-135. 
  19. J. She and J. Yeow, "Nanotechnoogy-Enabled Wireless Sensor Networks: From a Device Perspective," IEEE Sensors J., vol. 6, no. 5, Oct. 2006, pp. 1331-1339. 
  20. B. Atakan and O. Akan, "Carbon Nanotube Sensor Networks," Proc. IEEE NanoCom'09, San Francisco, USA, Aug. 2009. 
  21. S. Santra, S. Ali, P. Guha, G. Zhong, J. Robertson, J. Covington, W. Milne, J. Gardner, and F. Udrea, "Post-CMOS Wafer Level Growth of Carbon Nanotubes for Low-Cost Microsensors - a Proof of Concept," Nanotechnology, vol. 21, no. 48, Nov. 2010, pp. 485301. 
  22. M. Dragoman, D. Neculoiu, A. Cismaru, D. Dragoman, K. Grenier, S. Pacchini, L. Mazenq, and R. Plana, "High quality nanoelectromechanical microwave resonator based on a carbon nanotube array" Applied Physics Letters, vol. 92, Feb. 2008, pp. 063118. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

과제정보

DOI 인용 스타일